1
|
Jia J, Yang S, Li J, Liang Y, Li R, Tsuji T, Niu B, Peng B. Review of the Interfacial Structure and Properties of Surfactants in Petroleum Production and Geological Storage Systems from a Molecular Scale Perspective. Molecules 2024; 29:3230. [PMID: 38999184 PMCID: PMC11243718 DOI: 10.3390/molecules29133230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Surfactants play a crucial role in tertiary oil recovery by reducing the interfacial tension between immiscible phases, altering surface wettability, and improving foam film stability. Oil reservoirs have high temperatures and high pressures, making it difficult and hazardous to conduct lab experiments. In this context, molecular dynamics (MD) simulation is a valuable tool for complementing experiments. It can effectively study the microscopic behaviors (such as diffusion, adsorption, and aggregation) of the surfactant molecules in the pore fluids and predict the thermodynamics and kinetics of these systems with a high degree of accuracy. MD simulation also overcomes the limitations of traditional experiments, which often lack the necessary temporal-spatial resolution. Comparing simulated results with experimental data can provide a comprehensive explanation from a microscopic standpoint. This article reviews the state-of-the-art MD simulations of surfactant adsorption and resulting interfacial properties at gas/oil-water interfaces. Initially, the article discusses interfacial properties and methods for evaluating surfactant-formed monolayers, considering variations in interfacial concentration, molecular structure of the surfactants, and synergistic effect of surfactant mixtures. Then, it covers methods for characterizing microstructure at various interfaces and the evolution process of the monolayers' packing state as a function of interfacial concentration and the surfactants' molecular structure. Next, it examines the interactions between surfactants and the aqueous phase, focusing on headgroup solvation and counterion condensation. Finally, it analyzes the influence of hydrophobic phase molecular composition on interactions between surfactants and the hydrophobic phase. This review deepened our understanding of the micro-level mechanisms of oil displacement by surfactants and is beneficial for screening and designing surfactants for oil field applications.
Collapse
Affiliation(s)
- Jihui Jia
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
- International Institute for Carbon-Neutral Energy Research (ICNER), Kyushu University, Fukuoka 8190395, Japan
| | - Shu Yang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
| | - Jingwei Li
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yunfeng Liang
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 1138656, Japan
| | - Rongjuan Li
- School of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China
| | - Takeshi Tsuji
- International Institute for Carbon-Neutral Energy Research (ICNER), Kyushu University, Fukuoka 8190395, Japan
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 1138656, Japan
| | - Ben Niu
- CNPC Engineering Technology Research Company Limited, Tianjin 300451, China
| | - Bo Peng
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
2
|
Jiao J, Li T, Zhang G, Xiong J, Lang X, Quan X, Cheng Y, Wei Y. Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFH XA and the Anionic Surfactant SDS at the Air/Water Interface. Molecules 2024; 29:1606. [PMID: 38611886 PMCID: PMC11013209 DOI: 10.3390/molecules29071606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant systems containing the short-chain fluorocarbon surfactant perfluorohexanoic acid (PFHXA) and the hydrocarbon surfactant sodium dodecyl sulfate (SDS) were investigated by molecular dynamics simulation to investigate the microscopic properties at the air/water interface at different molar ratios. Some representative parameters, such as surface tension, degree of order, density distribution, radial distribution function, number of hydrogen bonds, and solvent-accessible surface area, were calculated. Molecular dynamics simulations show that compared with a single type of surfactant, mixtures of surfactants provide superior performance in improving the interfacial properties of the gas-liquid interface. A dense monolayer film is formed by the strong synergistic impact of the two surfactants. Compared to the pure SDS system, the addition of PFHXA caused SDS to be more vertically oriented at the air/water interface with a reduced tilt angle, and a more ordered structure of the mixed surfactants was observed. Hydrogen bonding between SDS headgroups and water molecules is enhanced with the increasing PFHXA. The surface activity is arranged in the following order: PFHXA/SDS = 1:1 > PFHXA/SDS = 3:1 > PFHXA/SDS = 1:3. These results indicate that a degree of synergistic relationship exists between PFHXA and SDS at the air/water interface.
Collapse
Affiliation(s)
- Jinqing Jiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China; (G.Z.); (X.L.); (Y.C.)
| | - Tao Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China; (T.L.); (J.X.); (X.Q.)
| | - Guangwen Zhang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China; (G.Z.); (X.L.); (Y.C.)
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China; (T.L.); (J.X.); (X.Q.)
| | - Xuqing Lang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China; (G.Z.); (X.L.); (Y.C.)
| | - Xiaolong Quan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China; (T.L.); (J.X.); (X.Q.)
| | - Yiwei Cheng
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China; (G.Z.); (X.L.); (Y.C.)
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China; (T.L.); (J.X.); (X.Q.)
| |
Collapse
|
3
|
Wang J, Liu R, Wang B, Cheng Z, Liu C, Tang Y, Zhu J. Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil. Polymers (Basel) 2023; 15:3139. [PMID: 37514526 PMCID: PMC10385753 DOI: 10.3390/polym15143139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Heavy oil exploitation needs efficient viscosity reducers to reduce viscosity, and polyether carboxylate viscosity reducers have a significant viscosity reduction effect on heavy oil. Previous work has studied the effect of different side chain lengths on this viscosity reducer, and now a series of polyether carboxylate viscosity reducers, including APAD, APASD, APAS, APA, and AP5AD (the name of the viscosity reducer is determined by the name of the desired monomer), with different electrical properties have been synthesized to investigate the effect of their different electrical properties on viscosity reduction performance. Through the performance tests of surface tension, contact angle, emulsification, viscosity reduction, and foaming, it was found that APAD viscosity reducers had the best viscosity reduction performance, reducing the viscosity of heavy oil to 81 mPa·s with a viscosity reduction rate of 98.34%, and the worst viscosity reduction rate of other viscosity reducers also reached 97%. Additionally, APAD viscosity reducers have the highest emulsification rate, and the emulsion formed with heavy oil is also the most stable. The net charge of APAD was calculated from the molar ratio of the monomers and the total mass to minimize the net charge. While the net charge of other surfactants was higher. It shows that the amount of the surfactant's net charge affects the surfactant's viscosity reduction effect, and the smaller the net charge of the surfactant itself, the better the viscosity reduction effect.
Collapse
Affiliation(s)
- Junqi Wang
- The Key Laboratory of Well Stability and Fluid & Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province, Xi'an Shiyou University, Xi'an 710065, China
| | - Ruiqing Liu
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bo Wang
- The Fourth Oil Production Factory of PetroChina Changqing Oilfield Company, Jingbian 718500, China
| | - Zhigang Cheng
- The Third Gas Production Plant of PetroChina Changqing Oilfield Company, Xi'an 710021, China
| | - Chengkun Liu
- The First Gas Production Plant of PetroChina Changqing Oilfield Company, Xi'an 710021, China
| | - Yiwen Tang
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junfeng Zhu
- The Key Laboratory of Well Stability and Fluid & Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Sun W, Liu W, Liu W, Li P, Chen X, Tong K, Kou W. Adsorption study of potential collector polyoxyethylene ether phosphate on magnesite. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Synergistic mechanism of mixed cationic/anionic collectors on lepidolite flotation from the perspective of improving the performance of flotation foam. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Microscopic mechanisms of MgCl2 affecting anionic surfactant adsorption kinetics on the air water interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Bai Y, Wen W, Gao Y, Cui W, Sun Y, Yan P. Molecular dynamics simulations of the structure-property relationships of DDA/anionic surfactant mixtures at the air/water interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Wang L, Wang G, Ge P, Sun W, Tang H, Hu W. Activation mechanisms of quartz flotation with calcium ions and cationic/anionic mixed collectors under alkalescent conditions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Hao H, Fan G, Yu J, Cao Y, Liu J, Das S. Adsorption changes of starch on minerals in carbonate-containing iron ore flotation by introducing amino radicals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sun Q, Ma X, Lu Y, Wang S, Zhong H. Insights into the selective adsorption mechanism of a multifunctional thioether-containing hydroxamic acid on separation of wolframite from fluorite. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Shu K, Xu L, Wu H, Tang Z, Luo L, Yang J, Xu Y, Feng B. Selective flotation separation of spodumene from feldspar using sodium alginate as an organic depressant. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: A study using molecular dynamic simulations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Abstract
Humin is the waste residue from the process of preparing humic acid, which accounts for a large proportion of the raw material (weathered coal humic acid). Its Cd(II) adsorption performance is far inferior to that of humic acid. How to regenerate humin is of great significance to the low-cost treatment of Cd(II) pollution in wastewater. In this study, humin was modified by hyperbranched polyethyleneimine to enhance the adsorption capacity for Cd(II). Fourier transform infrared spectroscopy and the X-ray photoelectron spectrometer showed that hyperbranched polyethyleneimine was grafted to the surface of humin. Flame atomic absorption spectroscopy showed that the saturated Cd(II) adsorption capacity of the modified humin was increased to 11.975 mg/g, which is about 5 times than that of humin and is also higher than that of humic acid. The adsorption kinetics, adsorption isotherm, and thermodynamic properties of humic acid, humin, and modified humin were also studied. This study may provide a foundation for research utilizing natural resources to reduce heavy metal pollution in the environment.
Collapse
|
14
|
Xu L, Jiao F, Jia W, Pan Z, Hu C, Qin W. Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
New Combined Depressant/Collectors System for the Separation of Powellite from Dolomite and the Interaction Mechanism. MINERALS 2020. [DOI: 10.3390/min10030291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The flotation beneficiation of powellite from dolomite was achieved with a new reagent system that consists of a mixed collector of sodium oleate (NaOl) and benzohydroxamic acid (BHA) and a depressant sodium hexametaphosphate (SHMP). The interaction mechanism of the reagent regime with minerals was studied using zeta potential and X-ray photoelectron spectroscopy (XPS) detection together with crystal chemistry and interaction energy analysis. The matching features of O–O distance in BHA with that in saline minerals and active site density/activity were used as methods to explain the reagent/mineral interaction. The results of microflotation finally established the new reagent regime at pH 8–12: 2.5 × 10−4 M SHMP, 2 × 10−4 M mixed collector containing 1.5 × 10−4 M NaOl and 0.5 × 10−4 M BHA. SHMP selectively depresses the adsorption of NaOl and BHA onto dolomite but minimally affects the adsorption of NaOl and BHA on the powellite surface.
Collapse
|
16
|
CO2/N2 switchable aqueous foam stabilized by SDS/C12A surfactants: Experimental and molecular simulation studies. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Duan H, Liu W, Wang X, Liu W, Zhang X. Effect of secondary amino on the adsorption of N-Dodecylethylenediamine on quartz surface: A molecular dynamics study. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Yazhgur P, Vierros S, Hannoy D, Sammalkorpi M, Salonen A. Surfactant Interactions and Organization at the Gas-Water Interface (CTAB with Added Salt). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1855-1864. [PMID: 29309160 DOI: 10.1021/acs.langmuir.7b03560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We have studied adsorbed layers of cetyltrimethylammonium bromide (CTAB) at air-water interfaces in the presence of added electrolyte. Fast bubble compression/expansion measurements were used to obtain the surface equation of state, i.e., the surface tension vs CTAB surface concentration dependence. We show that while a simple model where the surfactant molecules are assumed to be noninteracting is insufficient to describe the measured response of the surfactant layer, a modified Frumkin equation where the local interactions between the molecular components depend on their surface concentration captures the response. The variation of the effective interactions in the surfactant layer in the model shows that the interactions in the surfactant layer change from effectively repulsive to attractive with increasing surface concentration. Molecular dynamics simulations are performed to probe the origins of the change in the interactions. The simulations indicate that already at low surface concentrations the surfactants aggregate as highly dynamic rafts with surfactant orientation parallel to the interface. Increasing the concentration leads to a change in the assembly morphology at the interface: the surfactant layer thickens and the surfactants sample a range of tilted orientations with respect to the interfacial plane. The change from transient raftlike assemblies to dynamical aggregates at the interface involves a clear increase in the degree of counterion binding: we speculate that the flip of the effective interaction parameter in the model used to interpret the experimental results could result from this. The work here presents basic steps toward a proper understanding of the molecular organization and interactions of surfactants at an air-water interface. This is crucially important in understanding macroscopic properties of surfactant-stabilized systems such as foams, emulsions, and colloidal dispersions.
Collapse
Affiliation(s)
- Pavel Yazhgur
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Sud , 91405 Orsay, France
| | - Sampsa Vierros
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University , P.O. Box 16100, 00076 Aalto, Finland
| | - Delphine Hannoy
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Sud , 91405 Orsay, France
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University , P.O. Box 16100, 00076 Aalto, Finland
| | - Anniina Salonen
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Sud , 91405 Orsay, France
| |
Collapse
|
19
|
The flotation and adsorption of mixed collectors on oxide and silicate minerals. Adv Colloid Interface Sci 2017; 250:1-14. [PMID: 29150015 DOI: 10.1016/j.cis.2017.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on oxide and silicate minerals, we review and summarize the flotation and adsorption of three most widely used mixed surfactant systems (anionic-cationic, anionic-nonionic, and cationic-nonionic) at the liquid/mineral interface in order to fully understand the self-assembly progress. In the end, the paper gives a brief future outlook of the possible development in the mixed surfactants.
Collapse
|
20
|
Wu G, Zhu Q, Yuan C, Wang H, Li C, Sun S, Hu S. Molecular dynamics simulation of the influence of polyacrylamide on the stability of sodium dodecyl sulfate foam. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.02.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
|