1
|
Chen X, Su J, Xiang D, Yuan Z, Lu C. Rapid Size Determination of Quasispherical Gold Nanoparticles by Electrocatalysis Efficiency-Regulated Electrochemiluminescence. Anal Chem 2024; 96:17689-17697. [PMID: 39440875 DOI: 10.1021/acs.analchem.4c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The size of gold nanoparticles (AuNPs) largely decides their properties and applications, making the rapid screening of AuNP size important. Despite the fact that AuNP-amplified electrochemiluminescence (ECL) is widely used in various ECL sensing applications, the mechanism of ECL enhancement remains elusive, especially the quantitative relationship between the enhanced ECL intensity and the size of AuNPs. In this work, taking quasispherical and citrate-stabilized AuNPs as model nanoparticles, we have reported that the ECL intensity of the S2O82--O2 system enhanced significantly with the increasing AuNP size. AuNPs acted as bielectrocatalysts for reducing the S2O82- and O2. The further study of enhancement mechanism demonstrates that AuNPs with increasing size facilitate the electron transfer and promote the generation of radicals required for the ECL emission, which produces more emitters-singlet oxygen. Meanwhile, the high surface density of citrate on small AuNPs suppresses the ECL signal by forming an electrostatic barrier. On the basis of the above phenomena, an ECL-based rapid AuNP size screening approach has been established. The accuracy of this platform is verified by the consistent results in comparison to transmission electron microscopy (TEM) measurements. This work not only provides deep insight into the correlation between the AuNP size and the ECL enhancement but also contributes an alternative to the TEM technique for the rapid AuNP size screening. Additionally, this study also extends the exploration of ECL-based structure analysis techniques toward nanomaterials through clarifying the structure-electrocatalytic activity correlation.
Collapse
Affiliation(s)
- Xueqian Chen
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiyuan Su
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Dengke Xiang
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
4
|
Watchorn J, Stuart S, Clasky AJ, Oliveira MH, Burns DC, Gu FX. Transfer-based nuclear magnetic resonance uncovers unique mechanisms for protein-polymer and protein-nanoparticle binding behavior. J Mater Chem B 2023; 11:10121-10130. [PMID: 37824091 DOI: 10.1039/d3tb01668d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanoparticle-based drug delivery systems have shown increasing popularity as a means to improve patient outcomes by improving the effectiveness of active pharmaceutical ingredients (APIs). Similarly, nanoparticles have shown success in targeting alternative routes of API administration, such as applying mucoadhesion or mucopenetration to mucosal drug delivery to enhance uptake. While there are many promising examples of mucoadhesive nanomedicines in literature, there are also many examples of contradictory mucoadhesive binding behavior, most prominently in cases using the same nanoparticle materials. We have uncovered mechanistic insights in polymer-protein binding systems using nOe transfer-based NMR and sought to leverage them to explore nanoparticle-protein interactions. We tested several polymer-coated nanoparticles and micellar polymer nanoparticles and evaluated their binding with mucin proteins. We uncovered that the composition and interaction intimacy of polymer moieties that promote mucin binding change when the polymers are incorporated onto nanoparticle surfaces compared to polymer in solution. This change from solution state to nanoparticle coating can enable switching of behavior of these materials from inert to binding, as we observed in polyvinyl pyrrolidone. We also found the nanoparticle core was influential in determining the binding fate of polymer materials, whereas the nanoparticle size did not possess a clear correlation in the ranges we tested (60-270 nm). These experiments demonstrate that identical polymers may switch their binding behavior to mucin as a function of conformational changes that are induced by incorporating the polymers onto the surface of nanoparticles. These NMR-derived insights could be further leveraged to optimize nanoparticle formulations and guide polymer-mediated mucoadhesion.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Samantha Stuart
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Matthew H Oliveira
- Division of Engineering Science, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
5
|
Chakravarty R, Sen N, Ghosh S, Sarma HD, Guleria A, Singh KK, Chakraborty S. Flow synthesis of intrinsically radiolabeled and renal-clearable ultrasmall [198Au]Au nanoparticles in a PTFE microchannel. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
7
|
Ling FWM, Abdulbari HA, Chin SY. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Sim Yee Chin
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| |
Collapse
|
8
|
De Grandi D, Meghdadi A, LuTheryn G, Carugo D. Facile production of quercetin nanoparticles using 3D printed centrifugal flow reactors. RSC Adv 2022; 12:20696-20713. [PMID: 35919149 PMCID: PMC9295137 DOI: 10.1039/d2ra02745c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
A 3D printed reactor-in-a-centrifuge (RIAC) was developed to produce drug nanocrystals. Quercetin nanocrystals were manufactured at varying operational and formulation conditions, and had a small size (190–302 nm) and low size dispersity (PDI < 0.1).
Collapse
Affiliation(s)
- Davide De Grandi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia 27100, Italy
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Alireza Meghdadi
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Gareth LuTheryn
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
9
|
Li X, Wang H, Zou X, Su H, Li C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 170:106101. [PMID: 34936935 DOI: 10.1016/j.ejps.2021.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA). Targeting of MTX to inflamed joints is essential to the prevention of potential toxicity and improving therapeutic effects. Gold nanoparticles (GNPs) are characterized by controllable particle sizes and good biocompatibilities, therefore, they are promising drug delivery systems. We aimed at developing a GNPs drug delivery system incorporating MTX and folic acid (FA) with strong efficacies against RA. METHODS MTX-Cys-FA was synthesized through solid-phase organic synthesis. Then, it was coupled with sulfhydryl groups in GNPs, thereby successfully preparing a GNPs/MTX-Cys-FA nanoconjugate with targeting properties. Physical and chemical techniques were used to characterize it. Moreover, we conducted its stability, release, pharmacokinetics, biodistribution and cell cytotoxicity, cell uptake, cell migration, as well as its therapeutic effect on CIA rats. The histopathology was conducted to investigate anti-RA effects of GNPs/MTX-Cys-FA nanoconjugates. RESULTS The GNPs/MTX-Cys-FA nanoconjugate exhibited a spherical appearance, had a particle size of 103.06 nm, a zeta potential of -33.68 mV, drug loading capacity of 11.04 %, and an encapsulation efficiency of 73.61%. Cytotoxicity experiments revealed that GNPs had good biocompatibilities while GNPs/MTX-Cys-FA exhibited excellent drug-delivery abilities. Cell uptake and migration experiment showed that nanoconjugates containing FA by LPS activated mouse mononuclear macrophages (RAW264.7) was significantly increased, and they exerted significant inhibitory effects on human fibroblast-like synoviocytes (HFLS) of RA (p<0.01). In addition, the nanoconjugate prolonged blood circulation time of MTX in collagen-induced arthritis (CIA) rats (p<0.01), enhanced MTX accumulation in inflamed joints (p<0.01), enhanced their therapeutic effects (p<0.01), and reduced toxicity to major organs (p<0.01). CONCLUSION GNPs/MTX-Cys-FA nanoconjugates provide effective approaches for RA targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xuena Li
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Huanhui Wang
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Xiaotong Zou
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Hui Su
- Department of Pharmacy, The Sixth Affiliated Hospital of Harbin Medical University, No. 142 road, Zhongyuan Avenue, Harbin 150028, China
| | - Cheng Li
- College of Medicine, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China; Department of Pharmacy, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133000, China.
| |
Collapse
|
10
|
Koryakina IG, Afonicheva PK, Arabuli KV, Evstrapov AA, Timin AS, Zyuzin MV. Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Adv Colloid Interface Sci 2021; 298:102548. [PMID: 34757247 DOI: 10.1016/j.cis.2021.102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, nanomaterials demonstrating optical response under illumination, the so-called optically responsive nanoparticles (NPs), have found their broad application as optical switchers, gas adsorbents, data storage devices, and optical and biological sensors. Unique optical properties of such nanomaterials are strongly related to their chemical composition, geometrical parameters and morphology. Microfluidic approaches for NPs' synthesis allow overcoming the known critical stages in conventional synthesis of NPs due to a high rate of heat/mass transfer and precise regulation of synthesis conditions, which results in reproducible synthesis outcomes with the desired physico-chemical properties. Here, we review the recent advances in microfluidic approach for synthesis of optically responsive nanomaterials (plasmonic, photoluminescent, shape-changeable NPs), highlighting the general background of microfluidics, common considerations in the design of microfluidic chips (MFCs), and theoretical models of the NPs' formation mechanisms. Comparative analysis of microfluidic synthesis with conventional synthesis methods is provided further, along with the recent applications of optically responsive NPs in nano- and biophotonics.
Collapse
|
11
|
Khizar S, Zine N, Errachid A, Jaffrezic-Renault N, Elaissari A. Microfluidic based nanoparticle synthesis and their potential applications. Electrophoresis 2021; 43:819-838. [PMID: 34758117 DOI: 10.1002/elps.202100242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics for instance compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in production of nanoparticles in microfluidic environs having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, healthcare, including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating in order to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | | | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| |
Collapse
|
12
|
Benyahia B, Bandulasena MV, Bandulasena HCH, Vladisavljević GT. Experimental and Computational Analysis of Mixing Inside Droplets for Microfluidic Fabrication of Gold Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brahim Benyahia
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Monalie V. Bandulasena
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - H. C. Hemaka Bandulasena
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Goran T. Vladisavljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
13
|
Zhang M, Shao S, Yue H, Wang X, Zhang W, Chen F, Zheng L, Xing J, Qin Y. High Stability Au NPs: From Design to Application in Nanomedicine. Int J Nanomedicine 2021; 16:6067-6094. [PMID: 34511906 PMCID: PMC8418318 DOI: 10.2147/ijn.s322900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, Au-based nanomaterials are widely used in nanomedicine and biosensors due to their excellent physical and chemical properties. However, these applications require Au NPs to have excellent stability in different environments, such as extreme pH, high temperature, high concentration ions, and various biomatrix. To meet the requirement of multiple applications, many synthetic substances and natural products are used to prepare highly stable Au NPs. Because of this, we aim at offering an update comprehensive summary of preparation high stability Au NPs. In addition, we discuss its application in nanomedicine. The contents of this review are based on a balanced combination of our studies and selected research studies done by worldwide academic groups. First, we address some critical methods for preparing highly stable Au NPs using polymers, including heterocyclic substances, polyethylene glycols, amines, and thiol, then pay attention to natural product progress Au NPs. Then, we sum up the stability of various Au NPs in different stored times, ions solution, pH, temperature, and biomatrix. Finally, the application of Au NPs in nanomedicine, such as drug delivery, bioimaging, photothermal therapy (PTT), clinical diagnosis, nanozyme, and radiotherapy (RT), was addressed concentratedly.
Collapse
Affiliation(s)
- Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Haitao Yue
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Xin Wang
- The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| | - Wenrui Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Fei Chen
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Li Zheng
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Jun Xing
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| |
Collapse
|
14
|
Investigating the effect of nonionic surfactant on the silica nanoparticles formation and morphology in a microfluidic reactor. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Capabilities and Limitations of Fire-Shaping to Produce Glass Nozzles. MATERIALS 2020; 13:ma13235477. [PMID: 33271928 PMCID: PMC7730331 DOI: 10.3390/ma13235477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022]
Abstract
Microfluidic devices for drop and emulsion production are often built using fire-shaped (or fire-polished) glass nozzles. These are usually fabricated manually with inexpensive equipment. The shape limitations and poor reproducibility are pointed as the main drawbacks. Here, we evaluate the capabilities of a new fire-shaping approach which fabricates the nozzle by heating a vertical rotating capillary at the Bottom of a Lateral Flame (BLF). We analyze the effect of the heating conditions, and the capillary size and tolerances. The shape reproducibility is excellent for nozzles of the same size produced with the same conditions. However, the size reproducibility is limited and does not seem to be significantly affected by the heating conditions. Specifically, the minimum neck diameter standard deviation is 3%. Different shapes can be obtained by changing the heating position or the capillary dimensions, though, for a given diameter reduction, there is a minimum nozzle length due to the overturning of the surface. The use of thinner (wall or inner diameter) capillaries allows producing much shorter nozzles but hinders the size reproducibility. Finally, we showed an example of how the performance of a microfluidic device is affected by the nozzle shape: a Gas Dynamic Virtual Nozzle (GDVN) built with a higher convergent rate nozzle works over a wider parametric range without whipping.
Collapse
|
16
|
Synthesis of Negatively Charged CeO2 NPs and In Vitro Cytotoxicity Human Lens Epithelial (HLE) Cell Lines—Investigation for New Therapy for Cataract Treatment. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01793-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Neupane GR, Hari P. Role of Polyvinylpyrrolidone (PVP) on Controlling the Structural, Optical, and Electrical Properties of Vanadium Pentoxide (V
2
O
5
) Nanoparticles. ChemistrySelect 2020. [DOI: 10.1002/slct.202002916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ganga R. Neupane
- Department of Physics and Engineering Physics University of Tulsa Tulsa Oklahoma 74104 USA
| | - Parameswar Hari
- Department of Physics and Engineering Physics University of Tulsa Tulsa Oklahoma 74104 USA
- The Oklahoma Photovoltaic Research Institute University of Tulsa Tulsa Oklahoma 74104 USA
| |
Collapse
|
18
|
Chen Z, Chen B, He M, Hu B. Droplet-Splitting Microchip Online Coupled with Time-Resolved ICPMS for Analysis of Released Fe and Pt in Single Cells Treated with FePt Nanoparticles. Anal Chem 2020; 92:12208-12215. [PMID: 32786455 DOI: 10.1021/acs.analchem.0c01217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intracellular release of Fe/Pt ions from FePt nanoparticles (NPs) in single cells is highly critical to elucidate the potential cytotoxicity or potential cell protection mechanism of FePt NPs. For the first time, the quantitative analysis of Fe/Pt released from FePt-Cys NPs in single cells was achieved by a droplet-splitting microchip coupled online to inductively coupled plasma mass spectrometry detection. The droplet-splitting chip integrates droplet generation, cell lysis, and droplet-splitting units. The quantification of released Fe/Pt was achieved via measuring standard Fe/Pt ionic solutions. For the determination of total Fe/Pt in single cells, the same microchip with different operation modes (total-mode) was used, and the quantification of total Fe/Pt was achieved with FePt NPs as the standard. The developed method with two analysis modes was applied to study the decomposition behavior of FePt-Cys NPs in single cells, and the results indicated that the percentages of the cells absorbing/decomposing FePt-Cys NPs increased with the incubation time. Almost all cells absorbed FePt-Cys NPs after 6 h, while only about 60% cells decomposed FePt-Cys NPs after 6 h and almost all cells decomposed FePt-Cys NPs after 18 h. Besides, the released Fe content was lower than its endogenous content in cells and the release rate of Pt was higher than that of Fe, providing a possibility that the released Pt may contribute more to cytotoxicity. The developed system enabled fractionation of Fe/Pt in single cells treated with FePt NPs with high accuracy, easy operation, and high throughput and showed a great potential for elemental speciation at the single-cell level.
Collapse
Affiliation(s)
- Zhenna Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Low-cost and simple FDM-based 3D-printed microfluidic device for the synthesis of metallic core–shell nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2768-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Sui J, Yan J, Liu D, Wang K, Luo G. Continuous Synthesis of Nanocrystals via Flow Chemistry Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902828. [PMID: 31755221 DOI: 10.1002/smll.201902828] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/11/2019] [Indexed: 05/28/2023]
Abstract
Modern nanotechnologies bring humanity to a new age, and advanced methods for preparing functional nanocrystals are cornerstones. A considerable variety of nanomaterials has been created over the past decades, but few were prepared on the macro scale, even fewer making it to the stage of industrial production. The gap between academic research and engineering production is expected to be filled by flow chemistry technology, which relies on microreactors. Microreaction devices and technologies for synthesizing different kinds of nanocrystals are discussed from an engineering point of view. The advantages of microreactors, the important features of flow chemistry systems, and methods to apply them in the syntheses of salt, oxide, metal, alloy, and quantum dot nanomaterials are summarized. To further exhibit the scaling-up of nanocrystal synthesis, recent reports on using microreactors with gram per hour and larger production rates are highlighted. Finally, an industrial example for preparing 10 tons of CaCO3 nanoparticles per day is introduced, which shows the great potential for flow chemistry processes to transfer lab research to industry.
Collapse
Affiliation(s)
- Jinsong Sui
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyu Yan
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Di Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Bianchi P, Petit G, Monbaliu JCM. Scalable and robust photochemical flow process towards small spherical gold nanoparticles. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00092b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scalable preparation of small spherical gold nanoparticles under photochemical flow conditions.
Collapse
Affiliation(s)
- Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis
- MolSys Research Unit
- University of Liège
- Belgium
| | - Guillaume Petit
- Center for Integrated Technology and Organic Synthesis
- MolSys Research Unit
- University of Liège
- Belgium
| | | |
Collapse
|
22
|
Długosz O, Banach M. Inorganic nanoparticle synthesis in flow reactors – applications and future directions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00188k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of flow technologies for obtaining nanoparticles can play an important role in the development of ecological and sustainable processes for obtaining inorganic nanomaterials, and the continuous methods are part of the Flow Chemistry trend.
Collapse
Affiliation(s)
- Olga Długosz
- Faculty of Chemical Engineering and Technology
- Institute of Chemistry and Inorganic Technology
- Cracow University of Technology
- Cracow 31-155
- Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology
- Institute of Chemistry and Inorganic Technology
- Cracow University of Technology
- Cracow 31-155
- Poland
| |
Collapse
|
23
|
Chow E, Raguse B, Della Gaspera E, Barrow SJ, Hong J, Hubble LJ, Chai R, Cooper JS, Sosa Pintos A. Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00403c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Dimethylaminopyridine-stabilised gold nanoparticles are synthesised in a biphasic flow reactor system using organic/aqueous membrane separators and gas-permeable tubing.
Collapse
|
24
|
Di D, Qu X, Liu C, Fang L, Quan P. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform. Int J Pharm 2019; 572:118831. [DOI: 10.1016/j.ijpharm.2019.118831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023]
|
25
|
Solsona M, Vollenbroek JC, Tregouet CBM, Nieuwelink AE, Olthuis W, van den Berg A, Weckhuysen BM, Odijk M. Microfluidics and catalyst particles. LAB ON A CHIP 2019; 19:3575-3601. [PMID: 31559978 DOI: 10.1039/c9lc00318e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this review article, we discuss the latest advances and future perspectives of microfluidics for micro/nanoscale catalyst particle synthesis and analysis. In the first section, we present an overview of the different methods to synthesize catalysts making use of microfluidics and in the second section, we critically review catalyst particle characterization using microfluidics. The strengths and challenges of these approaches are highlighted with various showcases selected from the recent literature. In the third section, we give our opinion on the future perspectives of the combination of catalytic nanostructures and microfluidics. We anticipate that in the synthesis and analysis of individual catalyst particles, generation of higher throughput and better understanding of transport inside individual porous catalyst particles are some of the most important benefits of microfluidics for catalyst research.
Collapse
Affiliation(s)
- M Solsona
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - J C Vollenbroek
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - C B M Tregouet
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - A-E Nieuwelink
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - W Olthuis
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - A van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - M Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| |
Collapse
|
26
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
27
|
|
28
|
Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing. J Colloid Interface Sci 2019; 542:23-32. [DOI: 10.1016/j.jcis.2019.01.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022]
|
29
|
Alkayyali T, Cameron T, Haltli B, Kerr R, Ahmadi A. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria - A review. Anal Chim Acta 2019; 1053:1-21. [DOI: 10.1016/j.aca.2018.12.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
30
|
Jansi Rani B, Ravi G, Yuvakkumar R, Praveenkumar M, Ravichandran S, Muthu Mareeswaran P, Hong SI. Bi 2WO 6 and FeWO 4 Nanocatalysts for the Electrochemical Water Oxidation Process. ACS OMEGA 2019; 4:5241-5253. [PMID: 31459696 PMCID: PMC6648914 DOI: 10.1021/acsomega.8b03003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/05/2019] [Indexed: 06/10/2023]
Abstract
Polyvinylpyrrolidone (PVP)-assisted nanocatalyst preparation was succeeded by employing a controlled solvothermal route to produce efficient electrodes for electrochemical water-splitting applications. Bi2WO6 and FeWO4 nanocatalysts have been confirmed through the strong signature of (113) and (111) crystal planes, respectively. The binding natures of Bi-W-O and Fe-W-O have been thoroughly discussed by employing X-ray photoelectron spectroscopy which confirmed the formation of Bi2WO6 and FeWO4. The freestanding nanoplate array morphology of Bi2WO6 and the fine nanosphere particle morphology of FeWO4 nanocatalysts were revealed by scanning electron microscopy images. With these confirmations, the fabrication of durable, long-term electrodes for electrochemical water splitting has been subjected to efficient oxidation of water, confirmed by obtaining 2.79 and 1.96 mA/g for 0.5 g PVP-assisted Bi2WO6 and FeWO4 nanocatalysts, respectively. The water oxidation mechanism of both nanocatalysts has been revealed with the support of 24 h stability test over continuous water oxidation and faster charge transfer achieved by the smaller Tafel slope values of 75 and 78 mV/dec, respectively. Generally, these nanocatalysts are utilized for photocatalytic applications. The present study revealed the PVP-assisted synthesis to produce electrocatalytically active nanocatalysts and their electrochemical water-splitting mechanism which will offer a pathway for research interests with regard to the production of multifunctional nanocatalysts for both electro- and photocatalytic applications in the near future.
Collapse
Affiliation(s)
- Balasubramanian Jansi Rani
- Nanomaterials
Laboratory, Department of Physics, and Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ganesan Ravi
- Nanomaterials
Laboratory, Department of Physics, and Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Rathinam Yuvakkumar
- Nanomaterials
Laboratory, Department of Physics, and Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - M. Praveenkumar
- Electro
Inorganic Division, CSIR-Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subbiah Ravichandran
- Electro
Inorganic Division, CSIR-Central Electrochemical
Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Paulpandian Muthu Mareeswaran
- Nanomaterials
Laboratory, Department of Physics, and Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sun Ig Hong
- Department
of Nanomaterials Engineering, Chungnam National
University, Daejeon 305-764, South Korea
| |
Collapse
|
31
|
Droplet-based microfluidic method for robust preparation of gold nanoparticles in axisymmetric flow focusing device. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Theoretical modeling of transient reaction–diffusion dynamics in electrokinetic Y-shaped microreactors. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Huang H, du Toit H, Panariello L, Mazzei L, Gavriilidis A. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gold nanomaterials have diverse applications ranging from healthcare and nanomedicine to analytical sciences and catalysis. Microfluidic and millifluidic reactors offer multiple advantages for their synthesis and manufacturing, including controlled or fast mixing, accurate reaction time control and excellent heat transfer. These advantages are demonstrated by reviewing gold nanoparticle synthesis strategies in flow devices. However, there are still challenges to be resolved, such as reactor fouling, particularly if robust manufacturing processes are to be developed to achieve the desired targets in terms of nanoparticle size, size distribution, surface properties, process throughput and robustness. Solutions to these challenges are more effective through a coordinated approach from chemists, engineers and physicists, which has at its core a qualitative and quantitative understanding of the synthesis processes and reactor operation. This is important as nanoparticle synthesis is complex, encompassing multiple phenomena interacting with each other, often taking place at short timescales. The proposed methodology for the development of reactors and processes is generic and contains various interconnected considerations. It aims to be a starting point towards rigorous design procedures for the robust and reproducible continuous flow synthesis of gold nanoparticles.
Graphical Abstract:
Collapse
Affiliation(s)
- He Huang
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Hendrik du Toit
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Panariello
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Mazzei
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| |
Collapse
|
34
|
Li Y, He D, Tu J, Wang R, Zu C, Chen Y, Yang W, Shi D, Webster TJ, Shen Y. The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy. NANOSCALE 2018; 10:8628-8641. [PMID: 29697100 DOI: 10.1039/c7nr09083h] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since conventional chemotherapy is a systemic treatment that affects the body globally and will not concentrate inside the tumor, it causes adverse side effects to patients. In this study, doxorubicin (DOX) together with solid gold nanoparticles (GNPs) or hollow gold nanoparticles (HGNPs), respectively, is loaded inside thermosensitive liposomes (GNPs&DOX-TLs and HGNPs&DOX-TLs), where the GNPs and HGNPs act as a "nanoswitch" for killing tumor cells directly by hyperthermia and triggering DOX release from TLs in the tumor quickly by near infrared laser (NIR) illumination. In addition, this study investigated the photothermal transformation ability, NIR triggered drug release behavior, and the intracellular uptake and cytotoxicity of breast tumor cells and the thermo-chemotherapy mediated by the co-delivery of GNPs&DOX-TLs and HGNPs&DOX-TLs. GNPs and HGNPs had very different light-to-heat transduction efficiencies, while the hollow HGNPs had the advantage of NIR surface plasmon tunability, resulting in the photothermal ablation of tumors with 800 nm light penetration in tissue. The prepared HGNPs&DOX-TLs exhibited a spherical shape with a diameter of 190 nm and a ξ potential of -29 mV, which were steadily dispersed for at least one month. The co-encapsulated DOX was released under hyperthermia caused by NIR-responsive HGNPs and the local drug concentration increased along with the disintegration of the liposomal membrane. This co-delivery of HGNPs&DOX-TLs produced a synergistic cytotoxicity response, thereby enhancing anticancer efficacy 8-fold and increasing the survival time compared to GNPs&DOX-TLs. This work suggested that the co-delivery of HGNPs&DOX-TLs followed by burst-release of DOX using NIR-responsive HGNPs sensitized cancer cells to the chemotherapeutic compound, which provided a novel concept for the combination strategy of chemotherapy and photothermal therapy. These results suggest that the markedly improved therapeutic efficacy and decreased systemic toxicity of the NPs presented in this study hold significant potential for future cancer treatment.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gu T, Zheng C, He F, Zhang Y, Khan SA, Hatton TA. Electrically controlled mass transport into microfluidic droplets from nanodroplet carriers with application in controlled nanoparticle flow synthesis. LAB ON A CHIP 2018; 18:1330-1340. [PMID: 29619469 DOI: 10.1039/c8lc00114f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microfluidic droplets have been applied extensively as reaction vessels in a wide variety of chemical and biological applications. Typically, once the droplets are formed in a flow channel, it is a challenge to add new chemicals to the droplets for subsequent reactions in applications involving multiple processing steps. Here, we present a novel and versatile method that employs a high strength alternating electrical field to tunably transfer chemicals into microfluidic droplets using nanodroplets as chemical carriers. We show that the use of both continuous and cyclic burst square wave signals enables extremely sensitive control over the total amount of chemical added and, equally importantly, the rate of addition of the chemical from the nanodroplet carriers to the microfluidic droplets. An a priori theoretical model was developed to model the mass transport process under the convection-controlled scenario and compared with experimental results. We demonstrate an application of this method in the controlled preparation of gold nanoparticles by reducing chloroauric acid pre-loaded in microfluidic droplets with l-ascorbic acid supplied from miniemulsion nanodroplets. Under different field strengths, l-ascorbic acid is supplied in controllable quantities and addition rates, rendering the particle size and size distribution tunable. Finally, this method also enables multistep synthesis by the stepwise supply of miniemulsions containing different chemical species. We highlight this with a first report of a three-step Au-Pd core-shell nanoparticle synthesis under continuous flow conditions.
Collapse
Affiliation(s)
- Tonghan Gu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Cao Zheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Fan He
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Yunfei Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Saif A Khan
- National University of Singapore, Department of Chemical and Bimolecular Engineering, 4 Engineering Drive 4 E5-02-28, 117576 Singapore.
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Song Y, Sun J, Zhang Y, Wang B, Li Q, Fan Y. Facile synthesis of urchin-like RuCu and hollow RuCuMo nanoparticles and preliminary insight to their formation process by cyclic voltammetry. RSC Adv 2018; 8:14138-14143. [PMID: 35540753 PMCID: PMC9079869 DOI: 10.1039/c8ra01261j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Urchin-like RuCu nanoparticles and hollow RuCuMo nanoparticles were prepared by a one-pot chemical reduction method. The nanoparticles were characterized by EDX, HRTEM, XPS and ICP-AES. By combining cyclic voltammetry and TEM, the formation process of nanoparticles was obtained. The urchin-like RuCu nanoparticles are proved to be formed via underpotential deposition mechanism and the formation of ternary nanoparticles RuCuMo was due to the replacement of Cu with Ru and the interception of Mo gradually. It was found that the formation of different morphology is depended on the precursors in the reaction system and their reduction sequences. Compared to previously reported multi-step synthetic routes, the developed method here is much simpler.
Collapse
Affiliation(s)
- Yanna Song
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University Beijing 100083 China
| | - Jingcheng Sun
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University Beijing 100083 China
| | - Yanru Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University Beijing 100083 China
| | - Bingxin Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University Beijing 100083 China
| | - Qiang Li
- College of Science, Beijing Forestry University Beijing 100083 China +86-137-18679671
| | - Yongming Fan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University Beijing 100083 China
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China +86-185-15301003
| |
Collapse
|
37
|
Martins C, Araújo F, Gomes MJ, Fernandes C, Nunes R, Li W, Santos HA, Borges F, Sarmento B. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm 2018; 138:111-124. [PMID: 29397261 DOI: 10.1016/j.ejpb.2018.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus (HIV) uses the brain as reservoir, which turns it as a promising target to fight this pathology. Nanoparticles (NPs) of poly(lactic-co-glycolic) acid (PLGA) are potential carriers of anti-HIV drugs to the brain, since most of these antiretrovirals, as efavirenz (EFV), cannot surpass the blood-brain barrier (BBB). Forasmuch as the conventional production methods lack precise control over the final properties of particles, microfluidics emerged as a prospective alternative. This study aimed at developing EFV-loaded PLGA NPs through a conventional and microfluidic method, targeted to the BBB, in order to treat HIV neuropathology. Compared to the conventional method, NPs produced through microfluidics presented reduced size (73 nm versus 133 nm), comparable polydispersity (around 0.090), less negative zeta-potential (-14.1 mV versus -28.0 mV), higher EFV association efficiency (80.7% versus 32.7%) and higher drug loading (10.8% versus 3.2%). The microfluidics-produced NPs also demonstrated a sustained in vitro EFV release (50% released within the first 24 h). NPs functionalization with a transferrin receptor-binding peptide, envisaging BBB targeting, proved to be effective concerning nuclear magnetic resonance analysis (δ = -0.008 ppm; δ = -0.017 ppm). NPs demonstrated to be safe to BBB endothelial and neuron cells (metabolic activity above 70%), as well as non-hemolytic (1-2% of hemolysis, no morphological alterations on erythrocytes). Finally, functionalized nanosystems were able to interact more efficiently with BBB cells, and permeability of EFV associated with NPs through a BBB in vitro model was around 1.3-fold higher than the free drug.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Francisca Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria João Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carlos Fernandes
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland; HiLIFE - Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Fernanda Borges
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|