1
|
Ding Y, Gutiérrez-Ariza CM, Zheng M, Felgate A, Lawes A, Sainz-Díaz CI, Cartwright JHE, Cardoso SSS. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry. Phys Chem Chem Phys 2022; 24:17841-17851. [PMID: 35851594 DOI: 10.1039/d2cp01862d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical gardens are self-assembled structures of mineral precipitates enabled by semi-permeable membranes. To explore the effects of gravity on the formation of chemical gardens, we have studied chemical gardens grown from cobalt chloride pellets and aqueous sodium silicate solution in a vertical Hele-Shaw cell. Through photography, we have observed and quantitatively analysed upward growing tubes and downward growing fingers. The latter were not seen in previous experimental studies involving similar physicochemical systems in 3-dimensional or horizontal confined geometry. To better understand the results, further studies of flow patterns, buoyancy forces, and growth dynamics under schlieren optics have been carried out, together with characterisation of the precipitates with scanning electron microscopy and X-ray diffractometry. In addition to an ascending flow and the resulting precipitation of tubular filaments, a previously not reported descending flow has been observed which, under some conditions, is accompanied by precipitation of solid fingering structures. We conclude that the physics of both the ascending and descending flows are shaped by buoyancy, together with osmosis and chemical reaction. The existence of the descending flow might highlight a limitation in current experimental methods for growing chemical gardens under gravity, where seeds are typically not suspended in the middle of the solution and are confined by the bottom of the vessel.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Carlos M Gutiérrez-Ariza
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avenida de las Palmeras, 4, E-18100 Armilla, Granada, Spain.
| | - Mingchuan Zheng
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Amy Felgate
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Anna Lawes
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avenida de las Palmeras, 4, E-18100 Armilla, Granada, Spain.
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avenida de las Palmeras, 4, E-18100 Armilla, Granada, Spain. .,Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Avenida de Fuente Nueva, s/n, E-18071 Granada, Spain
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
2
|
Zhang Z, Fu Q, Zhang H, Yuan X, Yu KT. Experimental and Numerical Investigation on Interfacial Mass Transfer Mechanism for Rayleigh Convection in Hele-Shaw Cell. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qiang Fu
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huishu Zhang
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xigang Yuan
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kuo-Tsung Yu
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Ghoshal P, Cardoso SSS. Reactive convective-dissolution in a porous medium: stability and nonlinear dynamics. Phys Chem Chem Phys 2018; 20:21617-21628. [PMID: 30101260 DOI: 10.1039/c8cp03064b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effects of a dissolution reaction, A(aq) + B(s) → C(aq), on the gravitational instability and nonlinear dynamic behaviour of a diffusive boundary layer in a porous medium. Our linear stability and numerical results reveal that, unexpectedly, even when the density contribution of the soluble product C is smaller than that of the dissolved solute A, the chemical reaction can destabilize the layer and accelerate the onset of convection. However, for a very light product, the reaction stabilizes the layer. We show that these widely disparate characteristics of the reactive-diffusive layer are outcomes of the nonlinear competition between two reaction effects, the destabilizing sharpening of the solute concentration gradient and associated increase in the solute diffusive flux, and the stabilizing replacement of the solute by a less dense product near the interface.
Collapse
Affiliation(s)
- Parama Ghoshal
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK.
| | | |
Collapse
|