1
|
Karibayev M, Myrzakhmetov B, Bekeshov D, Wang Y, Mentbayeva A. Atomistic Modeling of Quaternized Chitosan Head Groups: Insights into Chemical Stability and Ion Transport for Anion Exchange Membrane Applications. Molecules 2024; 29:3175. [PMID: 38999128 PMCID: PMC11243541 DOI: 10.3390/molecules29133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The chemical stability and ion transport properties of quaternized chitosan (QCS)-based anion exchange membranes (AEMs) were explored using Density Functional Theory (DFT) calculations and all-atom molecular dynamics (MD) simulations. DFT calculations of LUMO energies, reaction energies, and activation energies revealed an increasing stability trend among the head groups: propyl trimethyl ammonium chitosan (C) < oxy propyl trimethyl ammonium chitosan (B) < 2-hydroxy propyl trimethyl ammonium chitosan (A) at hydration levels (HLs) of 0 and 3. Subsequently, all-atom MD simulations evaluated the diffusion of hydroxide ions (OH-) through mean square displacement (MSD) versus time curves. The diffusion coefficients of OH- ions for the three types of QCS (A, B, and C) were observed to increase monotonically with HLs ranging from 3 to 15 and temperatures from 298 K to 350 K. Across different HLs and temperatures, the three QCS variants exhibited comparable diffusion coefficients, underlining their effectiveness in vehicular transport of OH- ions.
Collapse
Affiliation(s)
- Mirat Karibayev
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Bauyrzhan Myrzakhmetov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dias Bekeshov
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Yanwei Wang
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Myrzakhmetov B, Akhmetova A, Bissenbay A, Karibayev M, Pan X, Wang Y, Bakenov Z, Mentbayeva A. Review: chitosan-based biopolymers for anion-exchange membrane fuel cell application. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230843. [PMID: 38026010 PMCID: PMC10645128 DOI: 10.1098/rsos.230843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Chitosan (CS)-based anion exchange membranes (AEMs) have gained significant attention in fuel cell applications owing to their numerous benefits, such as environmental friendliness, flexibility for structural alteration, and improved mechanical, thermal and chemical durability. This study aims to enhance the cell performance of CS-based AEMs by addressing key factors including mechanical stability, ionic conductivity, water absorption and expansion rate. While previous reviews have predominantly focused on CS as a proton-conducting membrane, the present mini-review highlights the advancements of CS-based AEMs. Furthermore, the study investigates the stability of cationic head groups grafted to CS through simulations. Understanding the chemical properties of CS, including the behaviour of grafted head groups, provides valuable insights into the membrane's overall stability and performance. Additionally, the study mentions the potential of modern cellulose membranes for alkaline environments as promising biopolymers. While the primary focus is on CS-based AEMs, the inclusion of cellulose membranes underscores the broader exploration of biopolymer materials for fuel cell applications.
Collapse
Affiliation(s)
- Bauyrzhan Myrzakhmetov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Aktilek Akhmetova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Aiman Bissenbay
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Mirat Karibayev
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Xuemiao Pan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Yanwei Wang
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Zhumabay Bakenov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| |
Collapse
|
3
|
Li R, Chen X, Zhou X, Shen Y, Fu Y. Understanding of hydroxide transport in poly(arylene indole piperidinium) anion exchange membranes: Effect of side-chain position. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Long Z, Tuckerman ME. Hydroxide Diffusion in Functionalized Cylindrical Nanopores as Idealized Models of Anion Exchange Membrane Environments: An Ab Initio Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:2792-2804. [PMID: 36968146 PMCID: PMC10034739 DOI: 10.1021/acs.jpcc.2c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Anion exchange membranes (AEMs) have attracted significant interest for their applications in fuel cells and other electrochemical devices in recent years. Understanding water distributions and hydroxide transport mechanisms within AEMs is critical to improving their performance as concerns hydroxide conductivity. Recently, nanoconfined environments have been used to mimic AEM environments. Following this approach, we construct nanoconfined cylindrical pore structures using graphane nanotubes (GNs) functionalized with trimethylammonium cations as models of local AEM morphology. These structures were then used to investigate hydroxide transport using ab initio molecular dynamics (AIMD). The simulations showed that hydroxide transport is suppressed in these confined environments relative to the bulk solution although the mechanism is dominated by structural diffusion. One factor causing the suppressed hydroxide transport is the reduced proton transfer (PT) rates due to changes in hydroxide and water solvation patterns under confinement compared to bulk solution as well as strong interactions between hydroxide ions and the tethered cation groups.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry, New York University, New York, New York10003, United States
| | - Mark E. Tuckerman
- Department
of Chemistry, New York University, New York, New York10003, United States
- Courant
Institute of Mathematical Science, New York
University, New York, New York10012, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai200062, China
| |
Collapse
|
5
|
Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Karibayev M, Kalybekkyzy S, Wang Y, Mentbayeva A. Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Molecules 2022; 27:3574. [PMID: 35684512 PMCID: PMC9182285 DOI: 10.3390/molecules27113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Anion Exchange Membrane (AEM) fuel cells have attracted growing interest, due to their encouraging advantages, including high power density and relatively low cost. AEM is a polymer matrix, which conducts hydroxide (OH-) ions, prevents physical contact of electrodes, and has positively charged head groups (mainly quaternary ammonium (QA) groups), covalently bound to the polymer backbone. The chemical instability of the quaternary ammonium (QA)-based head groups, at alkaline pH and elevated temperature, is a significant threshold in AEMFC technology. This review work aims to introduce recent studies on the chemical stability of various QA-based head groups and transportation of OH- ions in AEMFC, via modeling and simulation techniques, at different scales. It starts by introducing the fundamental theories behind AEM-based fuel-cell technology. In the main body of this review, we present selected computational studies that deal with the effects of various parameters on AEMs, via a variety of multi-length and multi-time-scale modeling and simulation methods. Such methods include electronic structure calculations via the quantum Density Functional Theory (DFT), ab initio, classical all-atom Molecular Dynamics (MD) simulations, and coarse-grained MD simulations. The explored processing and structural parameters include temperature, hydration levels, several QA-based head groups, various types of QA-based head groups and backbones, etc. Nowadays, many methods and software packages for molecular and materials modeling are available. Applications of such methods may help to understand the transportation mechanisms of OH- ions, the chemical stability of functional head groups, and many other relevant properties, leading to a performance-based molecular and structure design as well as, ultimately, improved AEM-based fuel cell performances. This contribution aims to introduce those molecular modeling methods and their recent applications to the AEM-based fuel cells research community.
Collapse
Affiliation(s)
- Mirat Karibayev
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Sandugash Kalybekkyzy
- Laboratory of Advanced Materials and Systems for Energy Storage, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Yanwei Wang
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Laboratory of Advanced Materials and Systems for Energy Storage, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
7
|
Charyton M, Iojoiu C, Fischer P, Henrion G, Etienne M, Donten ML. Composite Anion-Exchange Membrane Fabricated by UV Cross-Linking Vinyl Imidazolium Poly(Phenylene Oxide) with Polyacrylamides and Their Testing for Use in Redox Flow Batteries. MEMBRANES 2021; 11:436. [PMID: 34200638 PMCID: PMC8227260 DOI: 10.3390/membranes11060436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022]
Abstract
Composite anion-exchange membranes (AEMs) consisting of a porous substrate and a vinyl imidazolium poly(phenylene oxide) (VIMPPO)/acrylamide copolymer layer were fabricated in a straightforward process, for use in redox flow batteries. The porous substrate was coated with a mixture of VIMPPO and acrylamide monomers, then subsequently exposed to UV irradiation, in order to obtain a radically cured ion-exchange coating. Combining VIMPPO with low-value reagents allowed to significantly reduce the amount of synthesized ionomer used to fabricate the mem- brane down to 15%. Varying the VIMPPO content also allowed tuning the ionic transport properties of the resulting AEM. A series of membranes with different VIMPPO/acrylamides ratios were prepared to assess the optimal composition by studying the changes of membranes properties-water uptake, area resistivity, permeability, and chemical stability. Characterization of the membranes was followed by cycling experiments in a vanadium RFB (VRFB) cell. Among three composite membranes, the one with VIMPPO 15% w/w-reached the highest energy efficiency (75.1%) matching the performance of commercial ion-exchange membranes (IEMs) used in VRFBs (Nafion® N 115: 75.0% and Fumasep® FAP 450: 73.0%). These results showed that the proposed composite AEM, fabricated in an industrially oriented process, could be considered to be a lower-cost alternative to the benchmarked IEMs.
Collapse
Affiliation(s)
- Martyna Charyton
- Amer-sil S.A., 61 Rue d’Olm, 8281 Kehlen, Luxembourg;
- Department of Chemistry and Physics of Solids and Surfaces, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France;
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38 000 Grenoble, France;
| | - Peter Fischer
- Applied Electrochemistry, Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer, Straße 7, 76327 Pfinztal, Germany;
| | - Gerard Henrion
- Department of Chemistry and Physics of Solids and Surfaces, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France;
| | - Mathieu Etienne
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
8
|
Lei G, Chen D, Zhang X, Liu H. Improving water desalination via inhomogeneous distribution of [BMIM][BF4] in 2D carbon nanotube networks: Nonequilibrium molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Blend membranes based on N1-alkyl-substituted imidazolium functionalized polymers and aromatic polyethers: influence of N1-alkyl substituent on properties and alkaline stability. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wu L, Zhou X, Zhang G, Zhang N, Huang Y, Dai S, Shen Y. Tunable OH – Transport and Alkaline Stability by Imidazolium-Based Groups of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes: A Molecular Dynamics Simulation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lexuan Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xixing Zhou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Guangxu Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yingda Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Sheng Dai
- Department of Chemical Engineering, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Yinghua Shen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
11
|
Zhang J, He Y, Zhang K, Liang X, Bance‐Soualhi R, Zhu Y, Ge X, Shehzad MA, Yu W, Ge Z, Wu L, Varcoe JR, Xu T. Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast
OH
−
conduction. AIChE J 2021. [DOI: 10.1002/aic.17133] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jianjun Zhang
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Yubin He
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Kaiyu Zhang
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Xian Liang
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | | | - Yuan Zhu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Xiaolin Ge
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Muhammad A. Shehzad
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Weisheng Yu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Zijuan Ge
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Liang Wu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | | | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| |
Collapse
|
12
|
Zhou W, Li S, Lu W, Zhu J, Liu Y. Molecular simulation of CH4 and CO2 adsorption in shale organic nanopores. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1815728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wenning Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China
- Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing, People’s Republic of China
| | - Song Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Wei Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Jiadan Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Ying Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Effect of side chain on the electrochemical performance of poly (ether ether ketone) based anion-exchange membrane: A molecular dynamics study. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117829] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Luque Di Salvo J, De Luca G, Cipollina A, Micale G. Effect of ion exchange capacity and water uptake on hydroxide transport in PSU-TMA membranes: A DFT and molecular dynamics study. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Zhou W, Wang H, Yang X, Liu X, Yan Y. Confinement Effects and CO2/CH4 Competitive Adsorption in Realistic Shale Kerogen Nanopores. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06549] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenning Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing 100083, China
| | - Haobo Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xunliang Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing 100083, China
| | - Yuying Yan
- Fluids & Thermal Engineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
17
|
Monhemi H, Dolatabadi S. Molecular dynamics simulation of high-pressure CO2 pasteurization reveals the interfacial denaturation of proteins at CO2/water interface. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Heydari Dokoohaki M, Zolghadr AR, Klein A. Impact of the chemical structure on the distribution of neuroprotective N-alkyl-9H-carbazoles at octanol/water interfaces. NEW J CHEM 2020. [DOI: 10.1039/c9nj04251b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All-atom molecular dynamics (MD) simulations were performed on distribution and agglomeration dynamics of neuroprotective N-(3-anilinopropyl)-9H-carbazoles at octanol/water interfaces.
Collapse
Affiliation(s)
| | | | - Axel Klein
- Department of Chemistry
- Shiraz University
- Shiraz
- Iran
- Department für Chemie
| |
Collapse
|
19
|
Zhou W, Zhang Z, Wang H, Yang X. Molecular Investigation of CO 2/CH 4 Competitive Adsorption and Confinement in Realistic Shale Kerogen. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1646. [PMID: 31756918 PMCID: PMC6956192 DOI: 10.3390/nano9121646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 12/23/2022]
Abstract
The adsorption behavior and the mechanism of a CO2/CH4 mixture in shale organic matter play significant roles to predict the carbon dioxide sequestration with enhanced gas recovery (CS-EGR) in shale reservoirs. In the present work, the adsorption performance and the mechanism of a CO2/CH4 binary mixture in realistic shale kerogen were explored by employing grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Specifically, the effects of shale organic type and maturity, temperature, pressure, and moisture content on pure CH4 and the competitive adsorption performance of a CO2/CH4 mixture were investigated. It was found that pressure and temperature have a significant influence on both the adsorption capacity and the selectivity of CO2/CH4. The simulated results also show that the adsorption capacities of CO2/CH4 increase with the maturity level of kerogen. Type II-D kerogen exhibits an obvious superiority in the adsorption capacity of CH4 and CO2 compared with other type II kerogen. In addition, the adsorption capacities of CO2 and CH4 are significantly suppressed in moist kerogen due to the strong adsorption strength of H2O molecules on the kerogen surface. Furthermore, to characterize realistic kerogen pore structure, a slit-like kerogen nanopore was constructed. It was observed that the kerogen nanopore plays an important role in determining the potential of CO2 subsurface sequestration in shale reservoirs. With the increase in nanopore size, a transition of the dominated gas adsorption mechanism from micropore filling to monolayer adsorption on the surface due to confinement effects was found. The results obtained in this study could be helpful to estimate original gas-in-place and evaluate carbon dioxide sequestration capacity in a shale matrix.
Collapse
Affiliation(s)
- Wenning Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.Z.); (H.W.); (X.Y.)
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.Z.); (H.W.); (X.Y.)
| | - Haobo Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.Z.); (H.W.); (X.Y.)
| | - Xu Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.Z.); (H.W.); (X.Y.)
| |
Collapse
|
20
|
|
21
|
Maroli N, Kalagatur NK, Bhasuran B, Jayakrishnan A, Manoharan RR, Kolandaivel P, Natarajan J, Kadirvelu K. Molecular Mechanism of T-2 Toxin-Induced Cerebral Edema by Aquaporin-4 Blocking and Permeation. J Chem Inf Model 2019; 59:4942-4958. [DOI: 10.1021/acs.jcim.9b00711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | |
Collapse
|
22
|
Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, Che Z, Chen X. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Tao
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Yukun Huang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| | - Chong Wang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Fang Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Lingling Yang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Li Ling
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhenming Che
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Xianggui Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| |
Collapse
|
23
|
Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study. ENERGIES 2019. [DOI: 10.3390/en12132521] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The thermal energy storage properties of a working fluid can be modified by the exothermic and endothermic adsorption and desorption of fluid molecules in the micro/nanoporous materials. In this study, thermogravimetric (TG) analysis experiments and molecular simulations (molecular dynamics, MD, and grand canonical Monte Carlo, GCMC) were employed to examine the thermal energy storage properties of the UIO-66 metal organic framework material, UIO-66/H2O nanofluids and pure water. Our results showed that the molecular simulation calculations were, in principle, consistent with the obtained experimental data. The thermal energy storage performance of UIO-66/H2O nanofluids was enhanced with the increase in the UIO-66 mass fraction. In addition, the differences between the simulation calculations and experimental results could be mainly ascribed to the different structures of UIO-66 and the evaporation of fluid samples. Furthermore, this work indicated that molecular simulations contributed to developing novel working pairs of metal organic heat carriers (MOHCs).
Collapse
|
24
|
Maroli N, Jayakrishnan A, Ramalingam Manoharan R, Kolandaivel P, Krishna K. Combined Inhibitory Effects of Citrinin, Ochratoxin-A, and T-2 Toxin on Aquaporin-2. J Phys Chem B 2019; 123:5755-5768. [DOI: 10.1021/acs.jpcb.9b03829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Lee B, Lim H, Chae JE, Kim HJ, Kim TH. Physically-crosslinked anion exchange membranes by blending ionic additive into alkyl-substituted quaternized PPO. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|