1
|
Guo A, Zhang P, Yuan S. Effect of Inorganic Additive Strategy on the Stability of VO2+ in Vanadium Redox Flow Battery Electrolyte by Molecular Dynamics. J Phys Chem B 2024; 128:10460-10468. [PMID: 39405470 DOI: 10.1021/acs.jpcb.4c04090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Inorganic ions are considered to be effective additives to improve the temperature stability of all-vanadium redox flow batteries. In this study, molecular dynamics simulation has been performed to study the solvation structure and dynamic properties of VO2+ in the positive electrolyte by doping Na+, K+, and NH4+ in the presence of V2O5 precipitation. The results show that VO2+ ions aggregate into chainlike clusters in the electrolyte due to the induction of SO42-. The additives, which are stable in the solvation layers of VO2+, can work as protective shells to inhibit cluster growth. NH4+ is a superior dispersant compared with Na+ and K+ as it can stably exist in both the first solvation layer and the second solvation layer of VO2+. This work performed the molecular dynamics simulation of the electrolyte of vanadium redox flow batteries, and it gives some insights into the theoretical study of the modification of the cathode electrolyte.
Collapse
Affiliation(s)
- Anqi Guo
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, China
| | - Pengtu Zhang
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, China
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, China
| |
Collapse
|
2
|
Dou X, Xie X, Liang S, Fang G. Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci Bull (Beijing) 2024; 69:833-845. [PMID: 38302333 DOI: 10.1016/j.scib.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Vanadium-based cathodes have received widespread attention in the field of aqueous zinc-ion batteries, presenting a promising prospect for stationary energy storage applications. However, the rapid capacity decay at low current densities has hampered their development. In particular, capacity stability at low current densities is a requisite in numerous practical applications, typically encompassing peak load regulation of the electricity grid, household energy storage systems, and uninterrupted power supplies. Despite possessing notably high specific capacities, vanadium-based materials exhibit severe instability at low current densities. Moreover, the issue of stabilizing electrode reactions at these densities for vanadium-based materials has been explored insufficiently in existing research. This review aims to investigate the matter of stability in vanadium-based materials at low current densities by concentrating on the mechanisms of capacity fading and optimization strategies. It proposes a comprehensive approach that includes electrolyte optimization, electrode modulation, and electrochemical operational conditions. Finally, we presented several crucial prospects for advancing the practical development of vanadium-based aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Xinyue Dou
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Xuefang Xie
- College of Physical Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Shuquan Liang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Li W, Liao S, Xiang Z, Huang M, Fu Z, Li L, Liang Z. Thermodynamic regulation over nano-heterogeneous structure of electrolyte solution to improve stability of flow batteries. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Usability of unstable metal organic framework enabled by carbonization within flow battery membrane under harsh environment. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Lu Y, Lin S, Cao H, Xia Y, Xia Y, Xin L, Qu K, Zhang D, Yu Y, Huang K, Jing W, Xu Z. Efficient proton-selective hybrid membrane embedded with polydopamine modified MOF-808 for vanadium flow battery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Chen W, Wu X, Li T, Yan X, Zhang Y, Wang X, Zhang F, Zhang S, He G. Structural contribution of cationic groups to water sorption in anion exchange membranes: A combined DFT and MD simulation study. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Capillary method and molecular dynamics study of the diffusion and molecular structures of vanadium(IV)-ligand complexes. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Guo Q, Hu W, Zhang Y, Zhang K, Dong B, Qin Y, Li W. Molecular dynamics simulation of the interfacial properties of methane-water and methane-brine systems. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1929969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qiuyi Guo
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
| | - Wenfeng Hu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
| | - Yue Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
| | - Kun Zhang
- School of Ocean and Civil Engineering, Dalian Ocean University, Dalian, People’s Republic of China
| | - Bo Dong
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China
| | - Yan Qin
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China
| | - Weizhong Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
9
|
Zhou J, Liu Y, Zuo P, Li Y, Dong Y, Wu L, Yang Z, Xu T. Highly conductive and vanadium sieving Microporous Tröger's Base Membranes for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118832] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Chen C, Hu W, Yang L, Zhao J, Song Y. Gas supersaturation and diffusion joint controlled CH4 nanobubble evolution during hydrate dissociation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Sedghiniya S, Soleimannejad J, Foroutan M, Ebrahimi M, Naeini VF. A V( iii)-induced metallogel with solvent stimuli-responsive properties: structural proof-of-concept with MD simulations. RSC Adv 2021; 11:36801-36813. [PMID: 35494376 PMCID: PMC9043536 DOI: 10.1039/d1ra07055j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
A new solvent stimuli-responsive metallogel (VGel) was synthesized through the introduction of vanadium ions into an adenine (Ade) and 1,3,5-benzene tricarboxylic acid (BTC) organogel, and its supramolecular self-assembly was investigated from a computational viewpoint. A relationship between the synthesized VGel integrity and the self-assembly of its components is demonstrated by a broad range of molecular dynamics (MD) simulations, an aspect that has not yet been explored for such a complex metallogel in particular. MD simulations and Voronoi tessellation assessments, both in agreement with experimental data, confirm the gel formation. Based on excellent water stability and the ethanol/methanol stimuli-responsive feature of the VGel an easy-to-use visualization assay for the detection of counterfeit liquor with a 6% (v/v) methanol limit of detection in 40% (v/v) ethanol is reported. These observations provide a cheap and technically simple method and are a step towards the immersible screening of similar molecules in methanol-spiked beverages. A new solvent stimuli-responsive metallogel (VGel) was synthesized through the introduction of vanadium ions into an adenine (Ade) and BTC organogel, and its supramolecular self-assembly was investigated from a computational viewpoint.![]()
Collapse
Affiliation(s)
- Sima Sedghiniya
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Masumeh Foroutan
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mina Ebrahimi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Fadaei Naeini
- Division of Machine Elements, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
12
|
Zhang Y, Hu W, Sun J, Li Y, Chen C. Hydrogen bonds and hydrate interaction between RiAFP and water revealed by molecular dynamics simulations. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Structural study on Ti-ion complexes in concentrated aqueous electrolytes: Raman spectroscopy and high-energy X-ray total scattering. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Deng R, Xie Z, Liu Z, Tao C. Leaching kinetics of vanadium catalyzed by electric field coupling with sodium persulfate. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|