1
|
Santos FP, Tryggvason G, Ferreira GGS. Droplet-based logic gates simulation of viscoelastic fluids under electric field. Sci Rep 2024; 14:1771. [PMID: 38245567 PMCID: PMC10799872 DOI: 10.1038/s41598-024-52139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024] Open
Abstract
Nano and microfluidic technologies have shown great promise in the development of controlled drug delivery systems and the creation of microfluidic devices with logic-like functionalities. Here, we focused on investigating a droplet-based logic gate that can be used for automating medical diagnostic assays. This logic gate uses viscoelastic fluids, which are particularly relevant since bio-fluids exhibit viscoelastic properties. The operation of the logic gate is determined by evaluating various parameters, including the Weissenberg number, the Capillary number, and geometric factors. To effectively classify the logic gates operational conditions, we employed a deep learning classification to develop a reduced-order model. This approach accelerates the prediction of operating conditions, eliminating the need for complex simulations. Moreover, the deep learning model allows for the combination of different AND/OR branches, further enhancing the versatility of the logic gate. We also found that non-operating regions, where the logic gate does not function properly, can be transformed into operational regions by applying an external force. By utilizing an electrical induction technique, we demonstrated that the application of an electric field can repel or attract droplets, thereby improving the performance of the logic gate. Overall, our research shows the potential of the droplet-based logic gates in the field of medical diagnostics. The integration of deep learning classification algorithms enables rapid evaluation of operational conditions and facilitates the design of complex logic circuits. Additionally, the introduction of external forces and electrical induction techniques opens up new possibilities for enhancing the functionality and reliability of these logic gates.
Collapse
Affiliation(s)
- F P Santos
- Systems Engineering and Computer Science Program, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil.
| | - G Tryggvason
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MA, 21218, USA
| | - G G S Ferreira
- Chemical Engineering Program, Federal University of Rio de Janeiro, 21941-972, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Azizian P, Casals-Terré J, Ricart J, Cabot JM. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics. MICROSYSTEMS & NANOENGINEERING 2023; 9:91. [PMID: 37469685 PMCID: PMC10352302 DOI: 10.1038/s41378-023-00568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/21/2023]
Abstract
By manipulating the geometry and surface chemistry of microfluidic channels, capillary-driven microfluidics can move and stop fluids spontaneously without external instrumentation. Furthermore, complex microfluidic circuits can be preprogrammed by synchronizing the capillary pressures and encoding the surface tensions of microfluidic chips. A key component of these systems is the capillary valve. However, the main concern for these valves is the presence of unwanted diffusion during the valve loading and activation steps that can cause cross-contamination. In this study, we design and validate a novel diffusion-free capillary valve: the π-valve. This valve consists of a 3D structure and a void area. The void acts as a spacer between two fluids to avoid direct contact. When the valve is triggered, the air trapped within the void is displaced by pneumatic suction induced from the capillary flow downstream without introducing a gas bubble into the circuit. The proposed design eliminates diffusive mixing before valve activation. Numerical simulation is used to study the function and optimize the dimensions of the π-valve, and 3D printing is used to fabricate either the mould or the microfluidic chip. A comparison with a conventional valve (based on a constriction-expansion valve) demonstrates that the π-valve eliminates possible backflow into the valve and reduces the mixing and diffusion during the loading and trigger steps. As a proof-of-concept, this valve is successfully implemented in a capillary-driven circuit for the determination of benzodiazepine, achieving the successive release of 3 solutions in a 3D-printed microfluidic chip without external instrumentation. The results show a 40% increase in the fluorescence intensity using the π-valve relative to the conventional value. Overall, the π-valve prevents cross-contamination, minimizes sample use, and facilitates a sophisticated preprogrammed release of fluids, offering a promising tool for conducting automated immunoassays applicable at point-of-care testing.
Collapse
Affiliation(s)
- Pooya Azizian
- Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain
- Mechanical Engineering Department, Technical University of Catalonia, Terrassa, Barcelona Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department, Technical University of Catalonia, Terrassa, Barcelona Spain
| | - Jordi Ricart
- Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain
| | - Joan M. Cabot
- Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain
| |
Collapse
|
3
|
Hassan RU, Khalil SM, Khan SA, Moon J, Cho DH, Byun D. Electric field and viscous fluid polarity effects on capillary-driven flow dynamics between parallel plates. Heliyon 2023; 9:e16395. [PMID: 37251468 PMCID: PMC10220362 DOI: 10.1016/j.heliyon.2023.e16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
-Micropumps have attracted considerable interest in micro-electro-mechanical systems (MEMS), microfluidic devices, and biomedical engineering to transfer fluids through capillaries. However, improving the sluggish capillary-driven flow of highly viscous fluids is critical for commercializing MEMS devices, particularly in underfill applications. This study investigated the behavior of different viscous fluid flows under the influence of capillary and electric potential effects. We observed that upon increasing the electric potential to 500 V, the underfill flow length of viscous fluids increased by 45% compared to their capillary flow length. To explore the dynamics of underfill flow under the influence of an electric potential, the polarity of highly viscous fluids was altered by adding NaCl. The results indicated an increase of 20-41% in the underfill flow length of highly viscous conductive fluids (0.5-4% NaCl additives in glycerol) at 500 V compared to that at 0 V. The underfill viscous fluid flow length improved under the electric potential effect owing to the polarity across the substance and increased permittivity of the fluid. A time-dependent simulation, which included a quasi-electrostatic module, level set module, and laminar two-phase flow, was executed using the COMSOL Multiphysics software to analyze the effect of the external electric field on the capillary-driven flow. The numerical simulation results agreed well with the experimental data, with an average deviation of 4-7% at various time steps for different viscous fluids. Our findings demonstrate the potential of utilizing electric fields to control the capillary-driven flow of highly viscous fluids in underfill applications.
Collapse
Affiliation(s)
- Rizwan Ul Hassan
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | | | - Saeed Ahmed Khan
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Joonkyeong Moon
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Hyun Cho
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do, 52725, Republic of Korea
- Department of Energy System Engineering, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Doyoung Byun
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Design optimization and performance tuning of curved-DC-iDEP particle separation chips. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Wei D, Jin H, Ge L, Nie G, Guo R. Construction and regulation of aqueous-based Cerberus droplets by vortex mixing. J Colloid Interface Sci 2022; 627:194-204. [DOI: 10.1016/j.jcis.2022.06.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
7
|
Zhou C, Zhu P, Tian Y, Shi R, Wang L. Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. BIOPHYSICS REVIEWS 2022; 3:021301. [PMID: 38505416 PMCID: PMC10914135 DOI: 10.1063/5.0054201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/27/2022] [Indexed: 03/21/2024]
Abstract
All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.
Collapse
Affiliation(s)
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
8
|
Huang X, He L, Luo X, Xu K, Lü Y, Yang D. Non‐coalescence and chain formation of droplets under an alternating current electric field. AIChE J 2021. [DOI: 10.1002/aic.17165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xin Huang
- College of Pipeline and Civil Engineering China University of Petroleum (East China) Qingdao China
| | - Limin He
- College of Pipeline and Civil Engineering China University of Petroleum (East China) Qingdao China
- Surface Engineering Pilot Test Center China National Petroleum Corporation Daqing China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering China University of Petroleum (East China) Qingdao China
- Surface Engineering Pilot Test Center China National Petroleum Corporation Daqing China
| | - Ke Xu
- College of Pipeline and Civil Engineering China University of Petroleum (East China) Qingdao China
| | - Yuling Lü
- College of Pipeline and Civil Engineering China University of Petroleum (East China) Qingdao China
- Surface Engineering Pilot Test Center China National Petroleum Corporation Daqing China
| | - Donghai Yang
- College of Pipeline and Civil Engineering China University of Petroleum (East China) Qingdao China
- Surface Engineering Pilot Test Center China National Petroleum Corporation Daqing China
| |
Collapse
|
9
|
Castilleja-Escobedo O, Sánchez-García RE, Nigam KDP, López-Salinas JL. Directional displacement of non-aqueous fluids through spontaneous aqueous imbibition in porous structures. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Abbasi MS, Song R, Cho S, Lee J. Electro-Hydrodynamics of Emulsion Droplets: Physical Insights to Applications. MICROMACHINES 2020; 11:E942. [PMID: 33080954 PMCID: PMC7603096 DOI: 10.3390/mi11100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
The field of droplet electrohydrodynamics (EHD) emerged with a seminal work of G.I. Taylor in 1966, who presented the so-called leaky dielectric model (LDM) to predict the droplet shapes undergoing distortions under an electric field. Since then, the droplet EHD has evolved in many ways over the next 55 years with numerous intriguing phenomena reported, such as tip and equatorial streaming, Quincke rotation, double droplet breakup modes, particle assemblies at the emulsion interface, and many more. These phenomena have a potential of vast applications in different areas of science and technology. This paper presents a review of prominent droplet EHD studies pertaining to the essential physical insight of various EHD phenomena. Here, we discuss the dynamics of a single-phase emulsion droplet under weak and strong electric fields. Moreover, the effect of the presence of particles and surfactants at the emulsion interface is covered in detail. Furthermore, the EHD of multi-phase double emulsion droplet is included. We focus on features such as deformation, instabilities, and breakups under varying electrical and physical properties. At the end of the review, we also discuss the potential applications of droplet EHD and various challenges with their future perspectives.
Collapse
Affiliation(s)
- Muhammad Salman Abbasi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
| | - Seongsu Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Khater A, Abdelrehim O, Mohammadi M, Azarmanesh M, Janmaleki M, Salahandish R, Mohamad A, Sanati-Nezhad A. Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches. LAB ON A CHIP 2020; 20:2175-2187. [PMID: 32420570 DOI: 10.1039/d0lc00300j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase (φ: 0.1 to 1). The numerical simulations show that φ and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection.
Collapse
Affiliation(s)
- Asmaa Khater
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|
13
|
Azarmanesh M, Bawazeer S, Mohamad AA, Sanati-Nezhad A. Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One-Step Hybrid Microfluidic Device. Sci Rep 2019; 9:12694. [PMID: 31481702 PMCID: PMC6722102 DOI: 10.1038/s41598-019-49136-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple Emulsions (MEs) contain a drop laden with many micro-droplets. A single-step microfluidic-based synthesis process of MEs is presented to provide a rapid and controlled generation of monodisperse MEs. The design relies on the interaction of three immiscible fluids with each other in subsequent droplet formation steps to generate monodisperse ME constructs. The design is within a microchannel consists of two compartments of cross-junction and T-junction. The high shear stress at the cross-junction creates a stagnation point that splits the first immiscible phase to four jet streams each of which are sprayed to micrometer droplets surrounded by the second phase. The resulted structure is then supported by the third phase at the T-junction to generate and transport MEs. The ME formation within microfluidics is numerically simulated and the effects of several key parameters on properties of MEs are investigated. The dimensionless modeling of ME formation enables to change only one parameter at the time and analyze the sensitivity of the system to each parameter. The results demonstrate the capability of highly controlled and high-throughput MEs formation in a one-step synthesis process. The consecutive MEs are monodisperse in size which open avenues for the generation of controlled MEs for different applications.
Collapse
Affiliation(s)
- Milad Azarmanesh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Saleh Bawazeer
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Abdulmajeed A Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada. .,Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
14
|
Azarmanesh M, Dejam M, Azizian P, Yesiloz G, Mohamad AA, Sanati-Nezhad A. Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells. Sci Rep 2019; 9:6723. [PMID: 31040307 PMCID: PMC6491429 DOI: 10.1038/s41598-019-43056-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/10/2019] [Indexed: 01/30/2023] Open
Abstract
Microinjection is an effective actuation technique used for precise delivery of molecules and cells into droplets or controlled delivery of genes, molecules, proteins, and viruses into single cells. Several microinjection techniques have been developed for actuating droplets and cells. However, they are still time-consuming, have shown limited success, and are not compatible with the needs of high-throughput (HT) serial microinjection. We present a new passive microinjection technique relying on pressure-driven fluid flow and pulsative flow patterns within an HT droplet microfluidic system to produce serial droplets and manage rapid and highly controlled microinjection into droplets. A microneedle is secured within the injection station to confine droplets during the microinjection. The confinement of droplets on the injection station prevents their movement or deformation during the injection process. Three-dimensional (3D) computational analysis is developed and validated to model the dynamics of multiphase flows during the emulsion generation. We investigate the influence of pulsative flows, microneedle parameters and synchronization on the efficacy of microinjection. Finally, the feasibility of implementing our microinjection model is examined experimentally. This technique can be used for tissue engineering, cells actuation and drug discovery as well as developing new strategies for drug delivery.
Collapse
Affiliation(s)
- Milad Azarmanesh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Morteza Dejam
- Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming, 82071-2000, USA
| | - Pooya Azizian
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, Shariati St., Babol, 4714871167, Iran
| | - Gurkan Yesiloz
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Abdulmajeed A Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada. .,Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|