1
|
Wu L, Hu Z, Gao Y, Yue C, Liu C, Liew RK, Liu T, Zhou J. Feasibility of microwave remediation of simulative crude oil-contaminated soil assisted by bluecoke-based modifiers. CHEMOSPHERE 2024; 362:142600. [PMID: 38871189 DOI: 10.1016/j.chemosphere.2024.142600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microwave (MW) remediation of organics-contaminated soil technology offers the advantages of high efficiency and minimal damage, representing a new approach of soil thermal remediation. However, soil, being a weak MW-absorbing medium, struggles to convert MW energy into thermal energy, thus failing to attain the necessary temperature for thermal remediation. This paper prepared two new bluecoke (BC)-based modifiers (KHCO3@BC and KHCO3/MnO2@BC) to address temperature problem of MW remediation, as well as enhance soil quality. Their composition, structure and electromagnetic properties were analyzed to investigate their role in assisting with the MW remediation of an artificially crude oil-contaminated soil were investigated. Additionally, the industrial feasibility of MW remediation was addressed for the first time. The results showed that the KHCO3 and MnO2 particles in the two modifiers were covered on the BC surface and exhibited local agglomeration. Their carbon crystalline grain size increased, and the electromagnetic properties were weaker than those of the BC. Following 10 min of MW remediation assisted by KBC or KMnBC, the remediation temperatures exceeded 300 °C, with the removal rates of PHs reaching 76.16% and 88.31%, respectively. The organic matter content, soil potassium and mechanical fraction of the remediated soil were improved, but soil acidification still needed to be further addressed. The industrial application analysis indicated that the technical process and techno-economics of MW remediation of crude oil-contaminated soil were feasible, suggesting significant potential for the large-scale industrial application.
Collapse
Affiliation(s)
- Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zixuan Hu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuan Gao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changsheng Yue
- State Key Laboratory of Iron & Steel Industry Environmental Protection, Beijing, 100088, China
| | - Changbo Liu
- State Key Laboratory of Iron & Steel Industry Environmental Protection, Beijing, 100088, China
| | - Rock Keey Liew
- NV Western PLT, No 208B, Second Floor, Macalister Road, 10400, Georgetown, Penang, Malaysia
| | - Tiantian Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Zou M, Mao T, Li M, Mu Y, Pan L, Zheng C. Kinetic model of microwave-induced quaternarization using dimensional analysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Yu Q, Cai XS, Leveneur S, Wang XD, Liu HM, Zhang CX, Ma YX. Kinetic modeling of the sesamin conversion into asarinin in the presence of citric acid loading on Hβ. Front Nutr 2022; 9:983843. [PMID: 36034908 PMCID: PMC9399800 DOI: 10.3389/fnut.2022.983843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work, effects of reaction temperature, reactant concentration, catalyst loading, and rotation speed on the kinetics of sesamin conversion in a sesame oil system were studied by using citric acid loading on Hβ zeolite (CA/Hβ) as a catalyst. A kinetic model was built for sesamin conversion. The kinetic model fits correctly the experimental concentration of sesamin and asarinin (RSesamin2 = 0.93 and RAsarinin2 = 0.97). The sesamin conversion is an endothermic reaction (△HrIso = 3 4.578kJ/mol). The CA/Hβ catalyst could be easily regenerated by calcination, and there was no obvious loss of catalytic activity when reused. Knowledge of the sesamin conversion is of great significance for guiding production and improving the value and nutrition of sesame oil. In a word, this study lays the foundation for the scale-up of the production of asarinin from sesame oil using CA/Hβ as the catalyst.
Collapse
Affiliation(s)
- Qiong Yu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiao-Shuang Cai
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | | | - Xue-de Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review. ENERGIES 2022. [DOI: 10.3390/en15103588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The greatest challenge of our times is to identify low cost and environmentally friendly alternative energy sources to fossil fuels. From this point of view, the decarbonization of industrial chemical processes is fundamental and the use of hydrogen as an energy vector, usable by fuel cells, is strategic. It is possible to tackle the decarbonization of industrial chemical processes with the electrification of systems. The purpose of this review is to provide an overview of the latest research on the electrification of endothermic industrial chemical processes aimed at the production of H2 from methane and its use for energy production through proton exchange membrane fuel cells (PEMFC). In particular, two main electrification methods are examined, microwave heating (MW) and resistive heating (Joule), aimed at transferring heat directly on the surface of the catalyst. For cases, the catalyst formulation and reactor configuration were analyzed and compared. The key aspects of the use of H2 through PEM were also analyzed, highlighting the most used catalysts and their performance. With the information contained in this review, we want to give scientists and researchers the opportunity to compare, both in terms of reactor and energy efficiency, the different solutions proposed for the electrification of chemical processes available in the recent literature. In particular, through this review it is possible to identify the solutions that allow a possible scale-up of the electrified chemical process, imagining a distributed production of hydrogen and its consequent use with PEMs. As for PEMs, in the review it is possible to find interesting alternative solutions to platinum with the PGM (Platinum Group Metal) free-based catalysts, proposing the use of Fe or Co for PEM application.
Collapse
|
5
|
Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes. ENERGIES 2022. [DOI: 10.3390/en15082858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chemical industry is considered to be one of the largest consumers of energy in the manufacturing sector. As the cost of energy is rising rapidly, coupled with the increasingly stringent standards for the release of harmful chemicals and gases into the environment, more attention is now focused on developing energy efficient chemical processes that could significantly reduce both operational costs and greenhouse gas emissions. Alkene epoxidation is an important chemical process as the resultant epoxides are highly reactive compounds that are used as platform chemicals for the production of commercially important products for flavours, fragrances, paints and pharmaceuticals. A number of epoxidation methods have been developed over the past decade with the ultimate aim of minimising waste generation and energy consumption. In this review paper, some of the recent advances in epoxides synthesis using energy efficient processes are discussed. The epoxidation methods may provide sustainability in terms of environmental impact and energy consumption.
Collapse
|
6
|
Salmi T, Aguilera AF, Lindroos P, Kanerva L. Mathematical modelling of oleic acid epoxidation via a chemo-enzymatic route – From reaction mechanisms to reactor model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zora N, Rigaux T, Buvat JC, Lefebvre D, Leveneur S. Influence assessment of inlet parameters on thermal risk and productivity: Application to the epoxidation of vegetable oils. J Loss Prev Process Ind 2021. [DOI: 10.1016/j.jlp.2021.104551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Perez-Sena WY, Wärnå J, Eränen K, Tolvanen P, Estel L, Leveneur S, Salmi T. Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: Heterogeneously catalyzed epoxidation of fatty acid esters. Chem Eng Sci 2021; 230:116206. [PMID: 33071294 PMCID: PMC7553904 DOI: 10.1016/j.ces.2020.116206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
Greener and safer production of epoxidized vegetable oil. Positive effect of semibatch operation on the reaction performance. Kinetic modelling based on plausible mechanism for the alumina catalyzed epoxidation.
Heterogeneously catalyzed epoxidation of vegetable oils by hydrogen peroxide represents a greener route for the production of epoxides and a thermally safer reaction route compared to the classical Prileschajew epoxidation approach. The epoxidation kinetics of the heterogeneous system formed by aluminium oxide catalyst, hydrogen peroxide and methyl oleate as a model compound was studied with semibatch experiments in laboratory scale. It was found that semibatch operation improved the performance significantly compared to classical batch operation, a low and constant volumetric flowrate of hydrogen peroxide increased the final oxirane yield considerably. A semibatch reactor model and a kinetic model were developed, featuring the reaction temperature, the reactant molar ratio, the catalyst loading and the mass flow rate as the most significant experimental parameters. The mathematical model was able to well describe the experimental data. The approach can be applied to other liquid–solid catalyst systems in future in order to optimize the semibatch operation policy for complex reaction systems.
Collapse
Affiliation(s)
- Wander Y Perez-Sena
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, FR-76000 Rouen, France
| | - Johan Wärnå
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Kari Eränen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Pasi Tolvanen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Lionel Estel
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, FR-76000 Rouen, France
| | - Sébastien Leveneur
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, FR-76000 Rouen, France
| | - Tapio Salmi
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| |
Collapse
|
9
|
Catalá J, García-Vargas JM, Ramos MJ, Rodríguez JF, García MT. Analysis and optimization of grape seed oil epoxidation in supercritical CO2. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Vevere L, Fridrihsone A, Kirpluks M, Cabulis U. A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials. Polymers (Basel) 2020; 12:E2706. [PMID: 33207734 PMCID: PMC7696232 DOI: 10.3390/polym12112706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 01/06/2023] Open
Abstract
In recent decades, vegetable oils as a potential replacement for petrochemical materials have been extensively studied. Tall oil (crude tall oil, distilled tall oil, tall oil fatty acids, and rosin acids) is a good source to be turned into polymeric materials. Unlike vegetable oils, tall oil is considered as lignocellulosic plant biomass waste and is considered to be the second-generation raw material, thus it is not competing with the food and feed chain. The main purpose of this review article is to identify in what kind of polymeric materials wood biomass-based fatty acids and rosin acids have been applied and their impact on the properties.
Collapse
Affiliation(s)
- Laima Vevere
- Polymer Department, Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia; (A.F.); (M.K.); (U.C.)
| | | | | | | |
Collapse
|
11
|
Salvi H, Yadav GD. Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste. ACS OMEGA 2020; 5:22940-22950. [PMID: 32954143 PMCID: PMC7495740 DOI: 10.1021/acsomega.0c02462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
Limonene is one of the most important terpenes having wide applications in food and fragrance industries. The epoxide of limonene, limonene oxide, finds important applications as a versatile synthetic intermediate in the chemical industry. Therefore, attempts have been made to synthesize limonene oxide using eco-friendly processes because of stringent regulations on its production. In this regard, we have attempted to synthesize it using a cost-effective and eco-friendly process. Chemoenzymatic epoxidation of limonene to limonene oxide was carried out using in situ generation of peroxy octanoic acid from octanoic acid and H2O2. In this study, agricultural-waste rice husk ash (RHA)-derived silica was surface-functionalized using (3-aminopropyl) triethoxysilane (APTS), which was cross-linked using glutaraldehyde for immobilization of Candida antarctica lipase B. Furthermore, the immobilized enzyme was entrapped in calcium alginate beads to avoid enzyme leaching. Thus, limonene oxide was prepared using this catalyst under conventional and microwave heating. The microwave irradiation intensifies the process, reducing the reaction time under the same conditions. Maximum conversion of limonene to limonene oxide of 75.35 ± 0.98% was obtained in 2 h at 50 °C using a microwave power of 50 W. In the absence of microwave irradiation, the conventional heating gave 44.6 ± 1.14% conversion in 12 h. The reaction mechanism was studied using the Lineweaver-Burk plot, which follows a ternary complex mechanism with inhibition due to peroxyoctanoic acid (in other words H2O2). The prepared catalyst shows high reusability and operational stability up to four cycles.
Collapse
|
12
|
Zhang J, Hu Y, Zhang F, Lu J, Huang J, Liu C, Jia P, Hu L, An R, Zhou Y. Recent Progress in Microwave-assisted Modification of Vegetable Oils or Their Derivatives. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200510231702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vegetable oils have been widely used in food, surfactants, lubricants, biodiesel,
coatings, and other fields due to their advantages such as renewable, abundant, suitable for
further processing, and biodegradable. On the other hand, microwave technology has attracted
extensive attention in organic and polymeric chemistry because the technology can
greatly shorten the reaction time, improve the yield of products, reduce side reactions, etc.
This paper summarized recent advances on the microwave-assisted modification of vegetable
oils or their derivatives, such as esterification of free fatty acids, transesterification
of triglycerides, epoxidation, and polymerization.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Yun Hu
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Fei Zhang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Jianyu Lu
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Jia Huang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Chengguo Liu
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Puyou Jia
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Lihong Hu
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| | - Rongrong An
- College of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yonghong Zhou
- Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing, 210042, China
| |
Collapse
|
13
|
Freites Aguilera A, Rahkila J, Hemming J, Nurmi M, Torres G, Razat T, Tolvanen P, Eränen K, Leveneur S, Salmi T. Epoxidation of Tall Oil Catalyzed by an Ion Exchange Resin under Conventional Heating and Microwave Irradiation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adriana Freites Aguilera
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Jani Rahkila
- Instrument Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Jarl Hemming
- Laboratory of Wood and Paper Chemistry, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Maristiina Nurmi
- Laboratory of Paper Coating and Converting, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Gaetan Torres
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Laboratoire de Sécurité des Procédés Chimiques, Institut National des Sciences Appliquées de Rouen, FR-76800 Saint-Étienne-du-Rouvray, France
| | - Théophile Razat
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Laboratoire de Sécurité des Procédés Chimiques, Institut National des Sciences Appliquées de Rouen, FR-76800 Saint-Étienne-du-Rouvray, France
| | - Pasi Tolvanen
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Kari Eränen
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Sébastien Leveneur
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Laboratoire de Sécurité des Procédés Chimiques, Institut National des Sciences Appliquées de Rouen, FR-76800 Saint-Étienne-du-Rouvray, France
| | - Tapio Salmi
- Laboratory of Industrial Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| |
Collapse
|
14
|
Wang W, Li Z, Zhang M, Sun C. Preparation of 3D network CNTs-modified nickel foam with enhanced microwave absorptivity and application potential in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:135006. [PMID: 31726351 DOI: 10.1016/j.scitotenv.2019.135006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) modified nickel foams (MWCNTs-NF) were developed with an electrophoretic deposition methodology for microwave (MW) assisted catalysis and processing enhancement. A nickel foam (NF) was selected to serve the dual purpose both as the MW absorbing catalytic materials and the matrix for MWCNTs loading in order to maximize the recyclability of the catalysts. The effects of electrophoretic voltage and concentration of electrophoretic fluid on the morphology and deposition characteristics of MWCNTs on the NF matrix were investigated. It was found that the MWCNTs-NF composite material resulted in strong enhancement of MW absorptivity with synergistic heat-generating effects that were not observed when MWCNTs or NF was exposed to MW alone. The combination of NF and MWCNTs brought a catalytic total organic carbon removal efficiency of 97% in wastewater treatment, while that using bare MWCNTs and NF were only 65.2% and 79.3%, respectively. The coupling of NF with MWCNTs led to the formation of additional MW-absorbing channels and focal sites with strong MW absorptivity, which in turn gave rise to the synergistic MW heating effects. This research highlights the great prospect of the MW-assisted reaction enhancement using the MWCNTs-NF composite material as the catalyst in wastewater treatment and other similar engineering applications.
Collapse
Affiliation(s)
- Wenlong Wang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong 250061, China
| | - Zhe Li
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong 250061, China
| | - Meng Zhang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong 250061, China.
| | - Chenggong Sun
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
15
|
Patil SS, Jena HM. Synthesis of Epoxidized Citrullus lanatus Seed Oil: Experimental Investigation and Statistical Optimization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wai PT, Jiang P, Shen Y, Zhang P, Gu Q, Leng Y. Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Adv 2019; 9:38119-38136. [PMID: 35541772 PMCID: PMC9075841 DOI: 10.1039/c9ra05943a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022] Open
Abstract
Functionalization of vegetable oils (VOs) including edible, non-edible, and waste cooking oil (WCOs) to epoxides (EVOs) is receiving great attention by many researchers from academia and industry because they are renewable, versatile, sustainable, non-toxic, and eco-friendly, and they can partially or totally replace harmful phthalate plasticizers. The epoxidation of VOs on an industrial scale has already been developed by the homogeneous catalytic system using peracids. Due to the drawbacks of this method, other systems including acidic ion exchange resins, polyoxometalates, and enzymes are becoming alternative catalysts for the epoxidation reaction. We have reviewed all these catalytic systems including their benefits and drawbacks, reaction mechanisms, intensification of each system in different ways as well as the physicochemical properties of VOs and EVOs and new findings in recent years. Finally, the current methods including titrimetric methods as well as ATR-FTIR and 1H NMR for determination of conversion, epoxidation, and selectivity of epoxidized vegetable oils (EVOs) are also briefly described.
Collapse
Affiliation(s)
- Phyu Thin Wai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Pingping Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Yirui Shen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Qian Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Yan Leng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|