1
|
Xiang S, Bai Y, Zhao J. Medium-term prediction of key chemical process parameter trend with small data. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
2
|
Chowdhury S, Lahiri SK, Hens A, Katiyar S. Performance enhancement of commercial ethylene oxide reactor by artificial intelligence approach. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The present work emphasizes the development of a generic methodology that addresses the core issue of any running chemical plant, i.e., how to maintain a delicate balance between profit and environmental impact. Here, an ethylene oxide (EO) production plant has been taken as a case study. The production of EO takes place in a multiphase catalytic reactor, the reliable first principle-based model of which is still not available in the literature. Artificial neural network (ANN) was therefore applied to develop a data-driven model of the complex reactor with the help of actual industrial data. The model successfully built up a correlation between the catalyst selectivity and temperature with other operational parameters. A hybrid multi-objective metaheuristic optimization technique, namely ANN-multi-objective genetic algorithm (MOGA) algorithm was used to develop a Pareto diagram of selectivity versus reactor temperature. The Pareto diagram will help the plant engineers to make a strategy on what operating conditions to be maintained to make a delicate balance between profit and environmental impact. It was also found that by applying this hybrid ANN-MOGA modeling and optimization technique, for a 720 KTA ethylene glycol plant, approximately 32,345 ton/year of carbon-di-oxide emission into the atmosphere can be reduced. Along with the reduction of environmental impact, this hybrid approach enables the plant to reduce raw material cost of nine million USD per annum simultaneously.
Collapse
Affiliation(s)
- Somnath Chowdhury
- Chemical Engineering Department , National Institute of Technology Durgapur , Durgapur 713209 , India
| | - Sandip Kumar Lahiri
- Chemical Engineering Department , National Institute of Technology Durgapur , Durgapur 713209 , India
| | - Abhiram Hens
- Chemical Engineering Department , National Institute of Technology Durgapur , Durgapur 713209 , India
| | - Samarth Katiyar
- Chemical Engineering Department , National Institute Of Technology Karnataka , Surathkal 575025 , India
| |
Collapse
|
3
|
Multi-Criteria Spare Parts Classification Using the Deep Convolutional Neural Network Method. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spare parts management is a critical issue in the industrial field, alongside planning maintenance and logistics activities. For accurate classification in particular, the decision-makers can determine the optimal inventory management strategy. However, problems such as criteria selection, rules explanatory, and learning ability arise when managing thousands of spare parts for modern industry. This paper presents a deep convolutional neural network based on graph (G-DCNN) which will realize multi-criteria classification through image identification based on an explainable hierarchical structure. In the first phase, a hierarchical classification structure is established according to the causal relationship of multiple criteria; in the second phase, nodes are colored according to their criteria level status so that the traditional numerical information can be visible through graph style; in the third phase, the colored structures are transferred into images and processed by structure-modified convolutional neural network, to complete the classification. Finally, the proposed method is applied in a real-world case study to validate its effectiveness, feasibility, and generality. This classification study supplies a good decision support to improve the monitor-focus on critical component and control inventory which will benefit the collaborative maintenance.
Collapse
|
4
|
Artificial Intelligence Applications for Increasing Resource Efficiency in Manufacturing Companies—A Comprehensive Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13126689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sustainability improvements in industrial production are essential for tackling climate change and the resulting ecological crisis. In this context, resource efficiency can directly lead to significant advancements in the ecological performance of manufacturing companies. The application of Artificial Intelligence (AI) also plays an increasingly important role. However, the potential influence of AI applications on resource efficiency has not been investigated. Against this background, this article provides an overview of the current AI applications and how they affect resource efficiency. In line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this paper identifies, categorizes, and analyzes seventy papers with a focus on AI tasks, AI methods, business units, and their influence on resource efficiency. Only a minority of papers was found to address resource efficiency as an explicit objective. Subsequently, typical use cases of the identified AI applications are described with a focus on predictive maintenance, production planning, fault detection and predictive quality, as well as the increase in energy efficiency. In general, more research is needed that explicitly considers sustainability in the development and use phase of AI solutions, including Green AI. This paper contributes to research in this field by systematically examining papers and revealing research deficits. Additionally, practitioners are offered the first indications of AI applications increasing resource efficiency.
Collapse
|
5
|
Machine learning-based modeling and operation of plasma-enhanced atomic layer deposition of hafnium oxide thin films. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|