1
|
Yan H, Liu B, Zhou X, Meng F, Zhao M, Pan Y, Li J, Wu Y, Zhao H, Liu Y, Chen X, Li L, Feng X, Chen D, Shan H, Yang C, Yan N. Enhancing polyol/sugar cascade oxidation to formic acid with defect rich MnO 2 catalysts. Nat Commun 2023; 14:4509. [PMID: 37495568 PMCID: PMC10372030 DOI: 10.1038/s41467-023-40306-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Oxidation of renewable polyol/sugar into formic acid using molecular O2 over heterogeneous catalysts is still challenging due to the insufficient activation of both O2 and organic substrates on coordination-saturated metal oxides. In this study, we develop a defective MnO2 catalyst through a coordination number reduction strategy to enhance the aerobic oxidation of various polyols/sugars to formic acid. Compared to common MnO2, the tri-coordinated Mn in the defective MnO2 catalyst displays the electronic reconstruction of surface oxygen charge state and rich surface oxygen vacancies. These oxygen vacancies create more Mnδ+ Lewis acid site together with nearby oxygen as Lewis base sites. This combined structure behaves much like Frustrated Lewis pairs, serving to facilitate the activation of O2, as well as C-C and C-H bonds. As a result, the defective MnO2 catalyst shows high catalytic activity (turnover frequency: 113.5 h-1) and formic acid yield (>80%) comparable to noble metal catalysts for glycerol oxidation. The catalytic system is further extended to the oxidation of other polyols/sugars to formic acid with excellent catalytic performance.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Engineering Drive 4, 117585, Singapore
| | - Bowen Liu
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK
| | - Xin Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Fanyu Meng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingyue Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yue Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jie Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yining Wu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hui Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yibin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiaobo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Honghong Shan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
2
|
Fuso A, Righetti L, Rosso F, Rosso G, Manera I, Caligiani A. A multiplatform metabolomics/reactomics approach as a powerful strategy to identify reaction compounds generated during hemicellulose hydrothermal extraction from agro-food biomasses. Food Chem 2023; 421:136150. [PMID: 37086522 DOI: 10.1016/j.foodchem.2023.136150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Hydrothermal treatment is commonly used for hemicelluloses extraction from lignocellulosic materials. In this study, we thoroughly investigated with a novel approach the metabolomics of degradation compounds formed when hazelnut shells are subjected to this type of treatment. Three different complementary techniques were combined, namely GC-MS, 1H NMR, and UHPLC-IM-Q-TOF-MS. Organic acids, modified sugars and aromatic compounds, likely to be the most abundant chemical classes, were detected and quantified by NMR, whereas GC- and LC-MS-based techniques allowed to detect many molecules with low and higher Mw, respectively. Furans, polyols, N-heterocyclic compounds, aldehydes, ketones, and esters appeared, among others. Ion mobility-based LC-MS method was innovatively used for this purpose and could allow soon to create potentially useful datasets for building specific databases relating to the formation of these compounds in different process conditions and employing different matrices. This could be a very intelligent approach especially in a risk assessment perspective.
Collapse
Affiliation(s)
- Andrea Fuso
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Laura Righetti
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy; Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, Netherlands; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, Netherlands.
| | - Franco Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, CN, Italy.
| | - Ginevra Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, CN, Italy.
| | - Ileana Manera
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, CN, Italy.
| | - Augusta Caligiani
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
3
|
The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters. Catalysts 2023. [DOI: 10.3390/catal13030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
H2 production can be used as a clean and renewable energy source for various applications, including fuel cells, internal combustion engines, and chemical production. Using nickel-based catalysts for steam reforming biomass tar presents challenges related to catalyst deactivation, poisoning, heterogeneous composition, high process temperatures, and gas impurities. To overcome these challenges, adopting a nickel-based catalyst with selected oxide support and MgO and CaO promoter is a promising approach for improving the efficiency and sustainability of steam reforming for hydrogen production. The majority of studies conducted to date have focused on the steam reforming of particular tar compounds, most commonly benzene, phenol, toluene, or naphthalene, over a range of support catalysts. However, the actual biomass tar composition is complex, and each component impacts how well steam reforming works. In this research, a multi-compound biomass tar model including phenol, toluene, naphthalene, and pyrene underwent a steam reforming process. Various types with 10 wt.% of nickel-based catalysts were generated by the co-impregnation technique, which included 90 wt.% different oxide supports (Al2O3, La2O3, and ZrO2) and 10 wt.% of combination alkaline oxide earth promoters (MgO and CaO). Thermogravimetric analysis, Brunauer–Emmett–Teller (BET) method, N2 physisorption, temperature-programmed reduction (H2-TPR), temperature-programmed desorption (CO2-TPD), and X-ray diffraction (XRD) of ni-based catalyst characterized physiochemical properties of the prepared catalyst. The reaction temperature used for steam reforming was 800 °C, an S/C ratio of 1, and a GHSV of 13,500 h−1. Ni/La2O3/MgO/CaO (NiLaMgCa) produced the most carbon to-gas conversion (86.27 mol%) and H2 yield (51.58 mol%) after 5 h of reaction compared to other catalysts tested in this study. Additionally, the filamentous carbon coke deposited on the spent catalyst of NiLaMgCa does not impact the catalyst activity. NiLaMgCa was the best catalyst compared to other catalysts investigated, exhibiting a stable and high catalytic performance in the steam reforming of gasified biomass tar. In conclusion, this study presents a novel approach by adding a combination of MgO and CaO promoters to a ni-based catalyst with various oxide supports, strengthening the metal-support interaction and improving the acid-base balance of the catalyst surface. The mesoporous structure and active phase (metallic Ni) were successfully developed. This can lead to an increase in the conversion of tar to H2 yield gas and a decrease in the production of undesired byproducts, such as CH4 and CO.
Collapse
|
4
|
Ke Y, Zhu C, Li J, Liu H, Yuan H. Catalytic Oxidation of Glycerol over Pt Supported on MOF-Derived Carbon Nanosheets. ACS OMEGA 2022; 7:46452-46465. [PMID: 36570183 PMCID: PMC9773361 DOI: 10.1021/acsomega.2c05155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
A series of nitrogen-doped porous carbon nanosheets (NPCNs) doped with transition-metal-supported Pt catalysts were prepared by colloidal deposition and evaluated for the selective oxidation of glycerol to glyceric acid (GLYA) under nonalkaline conditions. The transition metal contained in the catalyst was found to affect its performance and selectivity for GLYA, with the Pt/Zr@NPCN catalyst showing the highest catalytic activity and selectivity. These materials were characterized using Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and CO2 temperature-programmed desorption. The results showed that the small size of the Pt nanoparticles, the interaction between the Pt nanoparticles and the support, and the unique textural properties of the catalyst all promoted glycerol conversion and GLYA selectivity. A Zr concentration of 1.5 wt % and a support preparation temperature of 800 °C were found to provide a catalyst with the optimal performance that exhibited a glycerol conversion and selectivity for GLYA of 68.62 and 77.29%, respectively, at an initial O2 pressure of 10 bar and 60 °C after 6 h. Even after being recycled five times, this material provided a GLYA selectivity of approximately 75%, although the glycerol conversion decreased from 68 to 50%. The insights may provide new suggestions on the design of efficient support for the selective oxidation of polyols.
Collapse
Affiliation(s)
- Yihu Ke
- Key
Laboratory of Chemical Engineering and Technology, State Ethnic Affairs
Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China
- Ningxia
Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Chunmei Zhu
- Key
Laboratory of Chemical Engineering and Technology, State Ethnic Affairs
Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China
- Ningxia
Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Jingyun Li
- Key
Laboratory of Chemical Engineering and Technology, State Ethnic Affairs
Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China
- Ningxia
Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Hai Liu
- Key
Laboratory of Chemical Engineering and Technology, State Ethnic Affairs
Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China
- Ningxia
Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Hong Yuan
- Key
Laboratory of Chemical Engineering and Technology, State Ethnic Affairs
Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China
- Ningxia
Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
5
|
Jiang Y, Liu Y, He Y, Li D. Insight into the Effect of Cu Species and Its Origin in Pt-Based Catalysts on Reaction Pathways of Glycerol Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiwei Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
6
|
Zhang G, Zhao J, Jin X, Qian Y, Zhou M, Jia X, Sun F, Jiang J, Xu W, Sun B. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Front Chem 2022; 10:962579. [PMID: 36072704 PMCID: PMC9442352 DOI: 10.3389/fchem.2022.962579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Catalytic transformation of low-cost glycerol to value-added lactic acid (LA) is considered as one of the most promising technologies for the upgradation of glycerol into renewable products. Currently, research studies reveal that anaerobic transformation of glycerol to LA could also obtain green H2 with the same yield of LA. However, the combined value-added utilization of released H2 with high selectivity of LA during glycerol conversion under mild conditions still remains a grand challenge. In this perspective, for the first time, we conducted a comprehensive and critical discussion on current strategies for combined one-pot/tandem dehydrogenation of glycerol to LA with catalytic transfer hydrogenation of H2 acceptors (such as CO2) to other chemicals. The aim of this overview was to provide a general guidance on the atomic economic reaction pathway for upgrading low-cost glycerol and CO2 to LA as well as other chemicals.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
- *Correspondence: Guangyu Zhang,
| | - Jian Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Yanan Qian
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Mingchuan Zhou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xuewu Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Feng Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
7
|
Yan H, Li S, Feng X, Lu J, Zheng X, Li R, Zhou X, Chen X, Liu Y, Chen D, Shan H, Yang C. Rational Screening of Metal Catalysts for Selective Oxidation of Glycerol to Glyceric Acid from Microkinetic Analysis. AIChE J 2022. [DOI: 10.1002/aic.17868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Yan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Shangfeng Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Jiarong Lu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Xiuhui Zheng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Ruiying Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Xin Zhou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Xiaobo Chen
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Yibin Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - De Chen
- Department of Chemical Engineering Norwegian University of Science and Technology Trondheim Norway
| | - Honghong Shan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| |
Collapse
|
8
|
Yan H, Zhao M, Feng X, Zhao S, Zhou X, Li S, Zha M, Meng F, Chen X, Liu Y, Chen D, Yan N, Yang C. PO 4 3- Coordinated Robust Single-Atom Platinum Catalyst for Selective Polyol Oxidation. Angew Chem Int Ed Engl 2022; 61:e202116059. [PMID: 35261133 DOI: 10.1002/anie.202116059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/18/2022]
Abstract
Achieving efficient catalytic conversion over a heterogeneous catalyst with excellent resistance against leaching is still a grand challenge for sustainable chemical synthesis in aqueous solution. Herein, we devised a single-atom Pt1 /hydroxyapatite (HAP) catalyst via a simple hydrothermal strategy. Gratifyingly, this robust Pt1 /HAP catalyst exhibits remarkable catalytic selectivity and catalyst stability for the selective oxidation of C2 -C4 polyols to corresponding primary hydroxy acids. It is found that the Pt-(O-P) linkages with strong electron-withdrawing function of PO4 3- (Pt1 -OPO4 3- pair active site) not only realize the activation of the C-H bond, but also destabilize the transition state from adsorbed hydroxy acids toward the C-C cleavage, resulting in the sharply increased selectivity of hydroxy acids. Moreover, the strong PO4 3- -coordination effect provides electrostatic stabilization for single-atom Pt, ensuring the highly efficient catalysis of Pt1 /HAP for over 160 hours with superior leaching resistance.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Mingyue Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Siming Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Xin Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Shangfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Minghao Zha
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Fanyu Meng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Xiaobo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - Yibin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore, Singapore
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
9
|
Yan H, Zhao M, Feng X, Zhao S, Zhou X, Li S, Zha M, Meng F, Chen X, Liu Y, Chen D, Yan N, Yang C. PO
4
3−
Coordinated Robust Single‐Atom Platinum Catalyst for Selective Polyol Oxidation**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Yan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Mingyue Zhao
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Siming Zhao
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Xin Zhou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Shangfeng Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Minghao Zha
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Fanyu Meng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Xiaobo Chen
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - Yibin Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| | - De Chen
- Department of Chemical Engineering Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore Engineering Drive 4 117585 Singapore Singapore
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 China
| |
Collapse
|