1
|
Liu SZ, Ding W, Zhang HW, Li ZS, Tian KC, Liu C, Geng ZC, Xu CY. Magnetized bentonite modified rice straw biochar: Qualitative and quantitative analysis of Cd(II) adsorption mechanism. CHEMOSPHERE 2024; 359:142262. [PMID: 38714252 DOI: 10.1016/j.chemosphere.2024.142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.
Collapse
Affiliation(s)
- Shu-Zhi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hong-Wei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhu-Shuai Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ke-Chun Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ce Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, PR China, Yangling, 712100, China.
| | - Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, PR China, Yangling, 712100, China.
| |
Collapse
|
2
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Li K, Li X, Li B. Investigation the adsorption behavior of functional carbon-based composites for efficient removing anions / cations in single and multicomponent systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Mahouche-Chergui S, Oun A, Haddadou I, Hoyez C, Michely L, Ouellet-Plamondon C, Carbonnier B. Efficient and Recyclable Heterogeneous Catalyst Based on PdNPs Stabilized on a Green-Synthesized Graphene-like Nanomaterial: Effect of Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44673-44685. [PMID: 34506108 DOI: 10.1021/acsami.1c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports for the first time a straightforward and efficient approach to covalent surface functionalization of a sustainable graphene-like nanomaterial with abundant carboxylic acid groups. This approach results in an efficient and robust chelatant platform for anchoring highly dispersed ultrasmall palladium particles with excellent catalytic activity in the reduction of both cationic (methylene blue, MB) and anionic (eosin-Y, Eo-Y) toxic organic dyes. The large-specific-surface-area (SBET = 266.94 m2/g) graphene-like nanomaterial (GHN) was prepared through a green and cost-effective pyrolysis process from saccharose using layered bentonite clay as a template. To introduce a high density of carboxylic acid functions, GHN was first doubly functionalized by successive grafting reaction using two different strategies: (i) in the first case, GHN was first grafted by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and then bifunctionalized by chemical grafting of tris(4-hydroxyphenyl)methane triglycidyl ether (TGE). In the second case, the grafting order of the two molecules has been reversed. GHN-GPTMS-TGE provided the highest number of grafted reactive epoxy groups, and it was selected for further functionalization with carboxylic acid functions via a ring-opening reaction through a two-step hydrolysis (H2SO4)/oxidation (KMnO4) approach. The GHN nanomaterial bearing carboxylic acid groups was then treated with sodium hydroxide to produce a deprotonated carboxylic acid-rich platform. Finally, due to a high density of accessible chelatant carboxylic acid groups, GHN-COO- binds strongly a great amount of Pd2+ ions to form stable complexes which after reduction by NaBH4 leads to highly dispersed, densely anchored, and uniformly distributed nanoscale Pd particles (d ∼ 4.5 nm) on the surface of the functionalized GHN. The GHN-COO-@PdNPs nanohybrid proved to be highly efficient for dye reduction by NaBH4 in aqueous solution at room temperature. Moreover, because of the high stability of the as-prepared graphene-like supported PdNPs, it exhibited very good reusability and could be recycled up to eight times without any significant loss in activity.
Collapse
Affiliation(s)
| | - Abdallah Oun
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Imane Haddadou
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Clémentine Hoyez
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Laurent Michely
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Claudiane Ouellet-Plamondon
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| |
Collapse
|