1
|
Varotto A, Pasqual Laverdura U, Feroci M, Grilli ML. Photo-Thermal Dry Reforming of Methane with PGM-Free and PGM-Based Catalysts: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3809. [PMID: 39124473 PMCID: PMC11312950 DOI: 10.3390/ma17153809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Dry reforming of methane (DRM) is considered one of the most promising technologies for efficient greenhouse gas management thanks to the fact that through this reaction, it is possible to reduce CO2 and CH4 to obtain syngas, a mixture of H2 and CO, with a suitable ratio for the Fischer-Tropsch production of long-chain hydrocarbons. Two other main processes can yield H2 from CH4, i.e., Steam Reforming of Methane (SRM) and Partial Oxidation of Methane (POM), even though, not having CO2 as a reagent, they are considered less green. Recently, scientists' challenge is to overcome the many drawbacks of DRM reactions, i.e., the use of precious metal-based catalysts, the high temperatures of the process, metal particle sintering and carbon deposition on the catalysts' surfaces. To overcome these issues, one proposed solution is to implement photo-thermal dry reforming of methane in which irradiation with light is used in combination with heating to improve the efficiency of the process. In this paper, we review the work of several groups aiming to investigate the pivotal promoting role of light radiation in DRM. Focus is also placed on the catalysts' design and the progress needed for bringing DRM to an industrial scale.
Collapse
Affiliation(s)
- Alessio Varotto
- Energy Technologies and Renewable Sources Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy;
- Department of Fundamental and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano, 7, 00161 Rome, Italy;
| | - Umberto Pasqual Laverdura
- Energy Technologies and Renewable Sources Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy;
| | - Marta Feroci
- Department of Fundamental and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano, 7, 00161 Rome, Italy;
| | - Maria Luisa Grilli
- Energy Technologies and Renewable Sources Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy;
| |
Collapse
|
2
|
Martín-Espejo JL, Merkouri LP, Gándara-Loe J, Odriozola JA, Reina TR, Pastor-Pérez L. Nickel-based cerium zirconate inorganic complex structures for CO 2 valorisation via dry reforming of methane. J Environ Sci (China) 2024; 140:12-23. [PMID: 38331494 DOI: 10.1016/j.jes.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2024]
Abstract
The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.
Collapse
Affiliation(s)
- Juan Luis Martín-Espejo
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, Seville 41092, Spain
| | | | - Jesús Gándara-Loe
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, Seville 41092, Spain
| | - José Antonio Odriozola
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, Seville 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Tomas Ramirez Reina
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, Seville 41092, Spain.
| | - Laura Pastor-Pérez
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, Seville 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
3
|
Fluidized Bed Reforming of Methane by Chemical Looping with Cerium Oxide Oxygen Carriers. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
De Maron J, Mafessanti R, Gramazio P, Orfei E, Fasolini A, Basile F. H 2 Production by Methane Oxy-Reforming: Effect of Catalyst Pretreatment on the Properties and Activity of Rh-Ce 0.5Zr 0.5O 2 Synthetized by Microemulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:53. [PMID: 36615963 PMCID: PMC9823839 DOI: 10.3390/nano13010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Green hydrogen introduction in hard-to-abate processes is held back by the cost of substituting steam reforming plants with electrolyzers. However, green hydrogen can be integrated in properly modified reforming processes. The process proposed here involves the substitution of steam reforming with oxy-reforming, which is the coupling of the former with catalytic partial oxidation (CPO), exploiting the pure oxygen coproduced during electrolysis to feed CPO, which allows for better heat exchange thanks to its exothermic nature. With the aim of developing tailored catalysts for the oxy-reforming process, Ce0.5Zr0.5O2 was synthetized by microemulsion and impregnated with Rh. The Ce-based supports were calcined at different temperatures (750 and 900 °C) and the catalysts were reduced at 750 °C or 500 °C. Tuning the calcination temperature allowed for an increase in the support surface area, resulting in well-dispersed Rh species that provided a high reducibility for both the metal active phase and the Ce-based support. This allowed for an increase in methane conversion under different conditions of contact time and pressure and the outperformance of the other catalysts. The higher activity was related to well-dispersed Rh species interacting with the support that provided a high concentration of surface OH* on the Ce-based support and increased methane dissociation. This anticipated the occurrence and the extent of steam reforming over the catalytic bed, producing a smoother thermal profile.
Collapse
Affiliation(s)
- Jacopo De Maron
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Rodolfo Mafessanti
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Pio Gramazio
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Elisabetta Orfei
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Andrea Fasolini
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Francesco Basile
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| |
Collapse
|
5
|
Huang N, Su T, Qin Z, Ji H. Nickel Supported on Multilayer Vanadium Carbide for Dry Reforming of Methane. ChemistrySelect 2022. [DOI: 10.1002/slct.202203873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nongfeng Huang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Tongming Su
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Hongbing Ji
- Fine Chemical Institute Sun Yat-sen University 135 Xingangxi Road Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Dry Reforming of Methane with Mesoporous Ni/ZrO2 Catalyst. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/3139696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dry reforming of methane has exhibited significant environmental benefits as it utilizes two major greenhouse gases (CO2 and CH4) to produce synthesis gas, a major building block for hydrocarbons. This process has gained industrial attention as catalyst deactivation due to coke deposition being a major hindrance. The present study focuses on the dry reforming of methane over Ni-supported mesoporous zirconia support. Ni metal was loaded over in-house synthesized mesoporous zirconia within the 0–15 wt% range using the wet impregnation method. The physicochemical properties of the synthesized catalysts were studied using various characterization techniques, namely, XRD, SEM, FTIR, TGA, and N2 adsorption-desorption techniques. The activity of all the catalysts was evaluated at 750°C and gas hourly space velocity (GHSV) of 72000 ml/h/gcat for 9 hours (540 min). The deactivation factor indicating a loss in conversion with time is reported for each catalyst. 10 wt% Ni/ZrO2 showed the highest feed conversion of about 68.8% for methane and 70.2% for carbon dioxide and the highest stability (15.1% deactivation factor and 21% weight loss) for dry reforming of methane to synthesis gas.
Collapse
|
7
|
Lin Y, Yang C, Zhang W, Machida H, Norinaga K. Lattice Boltzmann study on the effect of hierarchical pore structure on fluid flow and coke formation characteristics in open-cell foam for dry reforming of methane. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Bespalko YN, Fedorova VE, Smal EA, Arapova MV, Valeev KR, Krieger TA, Ishchenko AV, Sadykov VA, Simonov MN. Ni and Ni–Co Catalysts Based on Mixed Ce–Zr Oxides Synthesized in Isopropanol Medium for Dry Reforming of Methane. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122080048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Recent advances and perspectives of perovskite-derived Ni-based catalysts for CO2 reforming of biogas. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Scavini M, Bertolotti F, Mlloja J, Umbri F, Bosc A, Cappelli S, Checchia S, Oliva C, Fumagalli P, Ceresoli D, Longhi M, Guagliardi A, Coduri M. Structure and Surface Relaxation of CeO 2 Nanoparticles Unveiled by Combining Real and Reciprocal Space Total Scattering Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3385. [PMID: 36234513 PMCID: PMC9565251 DOI: 10.3390/nano12193385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
We present a combined real and reciprocal space structural and microstructural characterization of CeO2 nanoparticles (NPs) exhibiting different crystallite sizes; ~3 nm CeO2 NPs were produced by an inverse micellae wet synthetic path and then annealed at different temperatures. X-ray total scattering data were analyzed by combining real-space-based Pair Distribution Function analysis and the reciprocal-space-based Debye Scattering Equation method with atomistic models. Subtle atomic-scale relaxations occur at the nanocrystal surface. The structural analysis was corroborated by ab initio DFT and force field calculations; micro-Raman and electron spin resonance added important insights to the NPs' defective structure. The combination of the above techniques suggests a core-shell like structure of ultrasmall NPs. These exhibit an expanded outer shell having a defective fluorite structure, while the inner shell is similar to the bulk structure. The presence of partially reduced O2-δ species testifies to the high surface activity of the NPs. On increasing the annealing temperature, the particle dimensions increase, limiting disorder as a consequence of the progressive surface-to-volume ratio reduction.
Collapse
Affiliation(s)
- Marco Scavini
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | - Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università Degli Studi dell’Insubria, 22100 Como, Italy
| | - Jonadri Mlloja
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | - Filippo Umbri
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | - Anna Bosc
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | - Serena Cappelli
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | - Stefano Checchia
- ESRF, The European Synchrotron, 71, Avenue des Martyrs, CS40220, CEDEX 9, 38043 Grenoble, France
| | - Cesare Oliva
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | - Patrizia Fumagalli
- Dipartimento di Scienze Della Terra “Ardito Desio”, University of Milan, Via Botticelli 23, 20133 Milano, Italy
| | | | - Mariangela Longhi
- Department of Chemistry, University of Milan, Via Golgi 19, 20131 Milano, Italy
| | | | - Mauro Coduri
- Department of Chemistry, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy
- INSTM, Via Giusti 9, 50121 Florence, Italy
| |
Collapse
|
12
|
Dry Reforming of Methane on Ni/Nanorod-CeO2 Catalysts Prepared by One-Pot Hydrothermal Synthesis: The Effect of Ni Content on Structure, Activity, and Stability. REACTIONS 2022. [DOI: 10.3390/reactions3030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The nanorod morphology of the CeO2 support has been recognized as more beneficial than other morphologies for catalytic activity in the dry reforming of methane. Ni/nanorod-CeO2 catalysts with different Ni contents were prepared by one-pot hydrothermal synthesis. Samples were characterized by X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), H2-temperature-programmed desorption (H2-TPD), field emission scanning electron microscopy/energy dispersive spectroscopy (FE-SEM/EDS), Brunauer–Emmet–Teller (BET) and Barrett–Joyner–Halenda (BHJ) analysis. The effect of Ni content on the size and the intrinsic strain of ceria was analyzed by the Size–Strain plot and Williamson–Hall plot of XRD data. The average Ni particle size and Ni dispersion were determined by H2-TPD. XRD and H2-TPR analysis revealed a strong Ni–support interaction that limited nickel sintering. The activity for the dry reforming of methane was tested with the stoichiometric mixture CO2:CH4:N2:He = 20:20:20:140, gas hourly space velocity (GHSV) = 300 L g−1 h−1, and temperatures in the range of 545–800 °C. The turnover frequency (TOF) value increased linearly with the average Ni particle size in the range of 5.5–33 nm, suggesting the structure sensitivity of the reaction. Samples with Ni loading of 4–12 wt.% showed high H2/CO selectivity and stability over time on stream, whereas the sample with a Ni loading of 2 wt.% was less selective and underwent rapid deactivation. Only a small amount of nanotubular carbon was observed by FE-SEM after the time-on-stream experiment. Deactivation of the low-Ni-content sample is ascribed to the easier oxidation of the small Ni particles.
Collapse
|
13
|
Sophiana IC, Iskandar F, Devianto H, Nishiyama N, Budhi YW. Coke-Resistant Ni/CeZrO 2 Catalysts for Dry Reforming of Methane to Produce Hydrogen-Rich Syngas. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1556. [PMID: 35564265 PMCID: PMC9101300 DOI: 10.3390/nano12091556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
Abstract
Dry reforming of methane was studied over high-ratio zirconia in ceria-zirconia-mixed oxide-supported Ni catalysts. The catalyst was synthesized using co-precipitation and impregnation methods. The effects of the catalyst support and Ni composition on the physicochemical characteristics and performance of the catalysts were investigated. Characterization of the physicochemical properties was conducted using X-ray diffraction (XRD), N2-physisorption, H2-TPR, and CO2-TPD. The results of the activity and stability evaluations of the synthesized catalysts over a period of 240 min at a temperature of 700 °C, atmospheric pressure, and WHSV of 60,000 mL g−1 h−1 showed that the 10%Ni/CeZrO2 catalyst exhibited the highest catalytic performance, with conversions of CH4 and CO2 up to 74% and 55%, respectively, being reached. The H2/CO ratio in the product was 1.4, which is higher than the stoichiometric ratio of 1, indicating a higher formation of H2. The spent catalysts showed minimal carbon deposition based on the thermo-gravimetry analysis, which was <0.01 gC/gcat, so carbon deposition could be neglected.
Collapse
Affiliation(s)
- Intan Clarissa Sophiana
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (I.C.S.); (H.D.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Ferry Iskandar
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Hary Devianto
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (I.C.S.); (H.D.)
| | - Norikazu Nishiyama
- Department of Chemical Engineering, Engineering Science School, Osaka University, Osaka 565-0871, Japan;
| | - Yogi Wibisono Budhi
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (I.C.S.); (H.D.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
14
|
Progress and Recent Strategies in the Synthesis and Catalytic Applications of Perovskites Based on Lanthanum and Aluminum. MATERIALS 2022; 15:ma15093288. [PMID: 35591622 PMCID: PMC9100353 DOI: 10.3390/ma15093288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
Lanthanum aluminate-based perovskite (LaAlO3) has excellent stability at high temperatures, low toxicity, and high chemical resistance and also offers wide versatility to the substitution of La3+ and Al3+, thus, allowing it to be applied as a catalyst, nano-adsorbent, sensor, and microwave dielectric resonator, amongst other equally important uses. As such, LaAlO3 perovskites have gained importance in recent years. This review considers the extensive literature of the past 10 years on the synthesis and catalytic applications of perovskites based on lanthanum and aluminum (LaAlO3). The aim is, first, to provide an overview of the structure, properties, and classification of perovskites. Secondly, the most recent advances in synthetic methods, such as solid-state methods, solution-mediated methods (co-precipitation, sol–gel, and Pechini synthesis), thermal treatments (combustion, microwave, and freeze drying), and hydrothermal and solvothermal methods, are also discussed. The most recent energetic catalytic applications (the dry and steam reforming of methane; steam reforming of toluene, glycerol, and ethanol; and oxidative coupling of methane, amongst others) using these functional materials are also addressed. Finally, the synthetic challenges, advantages, and limitations associated with the preparation methods and catalytic applications are discussed.
Collapse
|
15
|
Pinaeva LG, Noskov AS. Modern Level of Catalysts and Technologies for the Conversion of Natural Gas into Syngas. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Sustainable Synthesis of a Highly Stable and Coke-Free Ni@CeO2 Catalyst for the Efficient Carbon Dioxide Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A facile and green synthetic strategy is developed in this paper for the construction of an efficient catalyst for the industrially important carbon dioxide reforming of methane, which is also named the dry reforming of methane (DRM). Through controlling the synthetic strategy and Ni content, a high-performance Ni@CeO2 catalyst was successfully fabricated. The catalyst showed superb efficiency for producing the syngas with high and stable conversions at prolonged operating conditions. Incorporating Ni during the ceria (CeO2) crystallization resulted in a more stable structure and smaller nanoparticle (NP) size with a more robust interaction with the support than loading Ni on CeO2 supports by the conventional impregnation method. The H2/CO ratio was almost 1.0, indicating the promising applicability of utilizing the obtained syngas for the Fischer–Tropsch process to produce worthy chemicals. No carbon deposits were observed over the as-synthesized catalyst after operating the DRM reaction for 50.0 h, even at a more coke-favoring temperature (700 ∘C). Owing to the superb resistance to coke and sintering, control of the size of the Ni-NPs, uniform dispersion of the active phase, and potent metal interaction with the support, the synthesized catalyst achieved a magnificent catalytic activity and durability during serving for the DRM reaction for extended operating periods.
Collapse
|
17
|
The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Dry reforming of methane (DRM) over an Ni-based catalyst is an innovative research area due to the growing environmental awareness about mitigating global warming gases (CH4 and CO2) and creating a greener route of synthesis. Herein, 5% Ni supported on ZrO2 obtained from various sources was prepared by the impregnation method. The catalysts were calcined at 600, 700, and 800 °C. Furthermore, Ni-RC stabilized with MgO, SiO2, TiO2, and Y2O3 were tested. Characterization techniques employed comprise the N2 physisorption, infrared spectroscopy, Raman, thermogravimetric analysis, XRD, and TEM. The results of the present study indicated that the ZrO2 support source had a profound effect on the overall performance of the process. The best catalyst Ni-RC gave an average conversion of CH4 and CO2 of 61.5% and 63.6% and the least deactivation of 10.3%. The calcination pretreatment differently influenced the catalyst performance. When the average methane conversion was higher than 40%, increasing the calcination temperature decreased the activity. While for the low activity catalysts with an average methane conversion of less than 40% the impact of the calcination temperature did not constantly decrease with the temperature rise. The stabilization of Ni-RC denoted the preference Y2O3 stabilized catalyst with average values of CH4 and CO2 conversion of about 67% and 72%, respectively. The thorough study and fine correlation will be advantageous for technologically suitable Ni-15Y-RC catalysts for DRM.
Collapse
|
18
|
The role of water in bi-reforming of methane: a micro-kinetic study. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Sanna C, Squizzato E, Costamagna P, Holtappels P, Glisenti A. Electrochemical study of symmetrical intermediate temperature - solid oxide fuel cells based on La0.6Sr0.4MnO3 / Ce0.9Gd0.1O1.95 for operation in direct methane / air. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
Clean biogas, produced by anaerobic digestion of biomasses or organic wastes, is one of the most promising substitutes for natural gas. After its purification, it can be valorized through different reforming processes that convert CH4 and CO2 into synthesis gas (a mixture of CO and H2). However, these processes have many issues related to the harsh conditions of reaction used, the high carbon formation rate and the remarkable endothermicity of the reforming reactions. In this context, the use of the appropriate catalyst is of paramount importance to avoid deactivation, to deal with heat issues and mild reaction conditions and to attain an exploitable syngas composition. The development of a catalyst with high activity and stability can be achieved using different active phases, catalytic supports, promoters, preparation methods and catalyst configurations. In this paper, a review of the recent findings in biogas reforming is presented. The different elements that compose the catalytic system are systematically reviewed with particular attention on the new findings that allow to obtain catalysts with high activity, stability, and resistance towards carbon formation.
Collapse
|
21
|
Torimoto M, Sekine Y. Effects of alloying for steam or dry reforming of methane: a review of recent studies. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00066k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A survey on the catalytic nature of Ni-based alloy catalysts in recent years provides a direction for future catalyst development.
Collapse
Affiliation(s)
- Maki Torimoto
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yasushi Sekine
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
22
|
Torrez-Herrera JJ, Korili SA, Gil A. Recent progress in the application of Ni-based catalysts for the dry reforming of methane. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.2006891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- J. J. Torrez-Herrera
- INAMAT^2-Departamento de Ciencias, Edificio de los Acebos, Universidad Pública de Navarra, Pamplona, Spain
| | - S. A. Korili
- INAMAT^2-Departamento de Ciencias, Edificio de los Acebos, Universidad Pública de Navarra, Pamplona, Spain
| | - A. Gil
- INAMAT^2-Departamento de Ciencias, Edificio de los Acebos, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|