1
|
Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Song D, Hu C, Gao Z, Yang B, Li Q, Zhan X, Tong X, Tian J. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5837. [PMID: 36079218 PMCID: PMC9457521 DOI: 10.3390/ma15175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn-air battery has attracted extensive research in recent years due to the advantages of abundant resources, low price, high energy density, and high reduction potential. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of Zn-air battery during discharge and charge have complicated multi-electron transfer processes with slow reaction kinetics. It is important to develop efficient and stable oxygen electrocatalysts. At present, single-function catalysts such as Pt/C, RuO2, and IrO2 are regarded as the benchmark catalysts for ORR and OER, respectively. However, the large-scale application of Zn-air battery is limited by the few sources of the precious metal catalysts, as well as their high costs, and poor long-term stability. Therefore, designing bifunctional electrocatalysts with excellent activity and stability using resource-rich non-noble metals is the key to improving ORR/OER reaction kinetics and promoting the commercial application of the Zn-air battery. Metal-organic framework (MOF) is a kind of porous crystal material composed of metal ions/clusters connected by organic ligands, which has the characteristics of adjustable porosity, highly ordered pore structure, low crystal density, and large specific surface area. MOFs and their derivatives show remarkable performance in promoting oxygen reaction, and are a promising candidate material for oxygen electrocatalysts. Herein, this review summarizes the latest progress in advanced MOF-derived materials such as oxygen electrocatalysts in a Zn-air battery. Firstly, the composition and working principle of the Zn-air battery are introduced. Then, the related reaction mechanism of ORR/OER is briefly described. After that, the latest developments in ORR/OER electrocatalysts for Zn-air batteries are introduced in detail from two aspects: (i) non-precious metal catalysts (NPMC) derived from MOF materials, including single transition metals and bimetallic catalysts with Co, Fe, Mn, Cu, etc.; (ii) metal-free catalysts derived from MOF materials, including heteroatom-doped MOF materials and MOF/graphene oxide (GO) composite materials. At the end of the paper, we also put forward the challenges and prospects of designing bifunctional oxygen electrocatalysts with high activity and stability derived from MOF materials for Zn-air battery.
Collapse
Affiliation(s)
- Dongmei Song
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Changgang Hu
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Zijian Gao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Bo Yang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingxia Li
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Xin Tong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Juan Tian
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| |
Collapse
|
3
|
Lin SY, Zhang X, Sang SY, Zhang L, Feng JJ, Wang AJ. Bio-derived FeNi alloy confined in N-doped carbon nanosheets as efficient air electrodes for Zn-air battery. J Colloid Interface Sci 2022; 628:499-507. [PMID: 35933867 DOI: 10.1016/j.jcis.2022.07.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
It is imperative to design and manufacture electrocatalysts towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for popularization of rechargeable Zn-air batteries. Herein, FeNi alloy confined in N-doped carbon nanosheets (FeNi@NCSs) was harvested via a facile complexation-pyrolysis strategy from the mixture of guanine and metal chlorides. After strictly exploring the pyrolysis temperature and metal types, the resulted FeNi@NCSs showed greatly improved performances on both the ORR (onset potential of 0.93 V and half-wave potential of 0.84 V) and OER (overpotential of 318 mV at 10 mA cm-2 and 379 mV at 100 mA cm-2). Further, the FeNi@NCSs based Zn-air battery exhibited a higher open circuit voltage (1.496 V), a larger power density (128.8 mW cm-2), and prominent durability (360 cycles, 120 h). This study provides an appealing approach to utilize biomass for synthesis of low-cost and high-efficiency electrocatalysts in energy associated systems.
Collapse
Affiliation(s)
- Shi-Yi Lin
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xin Zhang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Si-Ying Sang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|