1
|
Liang W, Feng R, Li X, Duan X, Feng S, Chen J, Li Y, Chen J, Liu Z, Wang X, Ruan G, Tang S, Ding C, Huang B, Zou Z, Chen T. A RANKL-UCHL1-sCD13 negative feedback loop limits osteoclastogenesis in subchondral bone to prevent osteoarthritis progression. Nat Commun 2024; 15:8792. [PMID: 39389988 PMCID: PMC11466963 DOI: 10.1038/s41467-024-53119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Abnormal subchondral bone remodeling plays a pivotal role in the progression of osteoarthritis (OA). Here, we analyzed subchondral bone samples from OA patients and observed a significant upregulation of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) specifically in subchondral bone osteoclasts. Notably, we found a strong correlation between UCHL1 expression and osteoclast activity in the subchondral bone during OA progression in both human and murine models. Conditional UCHL1 deletion in osteoclast precursors exacerbated OA progression, while its overexpression, mediated by adeno-associated virus 9, alleviated this process in male mice. Mechanistically, RANKL stimulates UCHL1 expression in osteoclast precursors, subsequently stabilizing CD13, augmenting soluble CD13 (sCD13) release, and triggering an autocrine inhibitory effect on the MAPK pathway, thereby suppressing osteoclast formation. These findings unveil a previously unidentified negative feedback loop, RANKL-UCHL1-sCD13, that modulates osteoclast formation and presents a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Wenquan Liang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ru Feng
- Department of Rehabilitation medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xiaojia Li
- Department of Rehabilitation medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xingwei Duan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shourui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Rehabilitation Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yicheng Li
- Department of Rehabilitation medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Junqi Chen
- Department of Rehabilitation medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zezheng Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaogang Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Tianyu Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
3
|
Liu Y, Nie M, Li X, Wang H, Ren S, Zou D, Liu J, Li R. Garlic-derived Exosomes Alleviate Osteoarthritis Through Inhibiting the MAPK Signaling Pathway. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05047-6. [PMID: 39190086 DOI: 10.1007/s12010-024-05047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease affecting millions of people worldwide. Garlic-derived exosomes (GDEs) are nanoparticles extracted from garlic that exhibit anti-inflammatory effects on other diseases, but the effect of GDEs on OA has not been elucidated. In this study, GDEs were extracted and characterized. Chondrocytes were treated with IL-1β and incubated with GDEs in vitro, and the expression of cartilage matrix components (collagen II and aggrecan) and matrix degrading enzymes (MMP3 and MMP9) was evaluated via Western blotting. Changes in the MAPK pathway was also examined using Western blotting. The transcriptomic changes associated with GDE intervention were evaluated using high-throughput RNA-seq method. In vivo, we used anterior cruciate ligament transection (ACLT) combined with destabilization of the medial meniscus (DMM) surgery to establish a mouse OA model, and GDEs was intraarticularly injected into the joint cavity. The therapeutic effect of GDE was evaluated by behavioral and histopathological analysis. The results showed that IL-1β treatment inhibited the expression of collagen II and aggrecan, and upregulated the expression of MMP3 and MMP9, while GDE intervention alleviated these effects. GDEs also inhibited the phosphorylation of ERK, JNK, and P38. In vivo, GDE alleviated the sensitivity to heat stimulation and altered walking gait in a mouse OA model. Histopathological analysis indicated that GDE intervention ameliorated joint destruction in the knee joint without obvious toxicity. The results proved that GDEs alleviated the progression of OA in vitro and in vivo, and may be a potential disease-modifying drug for OA.
Collapse
Affiliation(s)
- Yuqin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ming Nie
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xueyi Li
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hao Wang
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shaoju Ren
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Dezheng Zou
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Ruidong Li
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
4
|
Scanzello CR, Hasty KA, Chung CB, Griffin TM, Willet NJ, Krug H, Chu CQ, Ewart D, Jerban S, Baker JF, Duvall CL, Brunger JM, Burdick JA, Spindler KP, Drissi H. Teaming up to overcome challenges toward translation of new therapeutics for osteoarthritis. J Orthop Res 2024. [PMID: 39103981 DOI: 10.1002/jor.25944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
As a leading global cause of musculoskeletal-related disability, osteoarthritis (OA) represents a public health urgency. Understanding of disease pathogenesis has advanced substantially in the past decade, yet no disease-modifying therapeutics have advanced to the clinic. To address this challenge, the CARE-AP (Cartilage Repair strategies to alleviate Arthritis Pain) collaborative research team was convened to bring together relevant multidisciplinary expertise and perspectives from across the VA research community nationwide. The first CARE-AP Annual Research Symposium took place (virtually) in February 2022 with roughly 90 participants. A number of innovative and therapeutic strategies were discussed, including siRNA approaches coupled with novel nanoparticle-based delivery systems, cellular engineering approaches to develop reparative cells that can probe the joint environment and respond to disease-specific cues, and novel biofabrication techniques to improve tissue engineering and effect "biological joint replacement." In addition, challenges and advances in rehabilitation approaches, imaging outcomes, and clinical studies were presented, which were integrated into a framework of recommendations for running "preclinical trials" to improve successful clinical translation.
Collapse
Affiliation(s)
- Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen A Hasty
- Research Service 151, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, Tennessee, USA
- Department of Orthopaedic Surgery and Biomedical Engineering, Campbell Clinic/University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christine B Chung
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Timothy M Griffin
- Oklahoma City VA Health Care System, Oklahoma City, Oklahoma, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nick J Willet
- Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, Oregon, USA
| | - Hollis Krug
- Rheumatology Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Rheumatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cong-Qiu Chu
- Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Division of Arthritis and Rheumatic Diseases, Oregon Health Sciences University, Portland, Oregon, USA
| | - David Ewart
- Rheumatology Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Rheumatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Saeed Jerban
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Joshua F Baker
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Kurt P Spindler
- Department of Orthopaedic Surgery, Sports Medicine, Cleveland Clinic Florida, Coral Springs, Florida, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
5
|
Tang Z, Li J, Li C. Post-Transcriptional Regulator RBM47 Stabilizes FBXO2 mRNA to Advance Osteoarthritis Development: WGCNA Analysis and Experimental Validation. Biochem Genet 2024; 62:3092-3110. [PMID: 38070024 DOI: 10.1007/s10528-023-10590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 07/31/2024]
Abstract
Osteoarthritis (OA) is a common chronic joint degenerative disease and a major cause of disability in the elderly. However, the current intervention strategies cannot effectively improve OA, and the pathogenesis of OA remains elusive. The present study identified RNA binding motif protein 47 (RBM47) as an upstream modulator of key dysregulation gene co-expression module based on weighted gene co-expression network analysis (WGCNA) analysis and least absolute shrinkage and selection operator (Lasso) modeling. Subsequently, data from real-time quantitative PCR and western blot analysis revealed that RBM47 was upregulated in OA models in vivo and in vitro compared with normal controls. Functional analysis results from the MTT assay, flow cytometry, evaluation of LDH activities and inflammatory mediators, and western blot analysis of extracellular matrix (ECM) proteins, showed that RBM47 knockdown significantly alleviated inflammation, apoptosis, and ECM degradation in interleukin 1β (IL-1β)-treated chondrocytes. Mechanistically, RBM47 bound to F box only protein 2 (FBXO2) and stabilized FBXO2 messenger RNA (mRNA) to promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in chondrocytes. Results from the recovery assay showed that the re-activation of STAT3 signaling by overexpressing FBXO2 or STAT3 counteracted the alleviating effect of RBM47 downregulation on IL-1β-induced inflammation, apoptosis, and ECM degradation. Altogether, our findings illustrate that RBM47 stabilizes FBXO2 mRNA to advance OA development by activating STAT3 signaling, which enhances our understanding of the molecular regulatory mechanisms underlying the development of OA.
Collapse
Affiliation(s)
- Zhifang Tang
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Jingyuan Li
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Chuan Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, No.212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
6
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
7
|
Gorgzadeh A, Amiri PA, Yasamineh S, Naser BK, Abdulallah KA. The potential use of nanozyme in aging and age-related diseases. Biogerontology 2024; 25:583-613. [PMID: 38466515 DOI: 10.1007/s10522-024-10095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.
Collapse
Affiliation(s)
| | - Paria Arab Amiri
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | |
Collapse
|
8
|
Rydén M, Sjögren A, Önnerfjord P, Turkiewicz A, Tjörnstrand J, Englund M, Ali N. Exploring the Early Molecular Pathogenesis of Osteoarthritis Using Differential Network Analysis of Human Synovial Fluid. Mol Cell Proteomics 2024; 23:100785. [PMID: 38750696 PMCID: PMC11252953 DOI: 10.1016/j.mcpro.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 06/23/2024] Open
Abstract
The molecular mechanisms that drive the onset and development of osteoarthritis (OA) remain largely unknown. In this exploratory study, we used a proteomic platform (SOMAscan assay) to measure the relative abundance of more than 6000 proteins in synovial fluid (SF) from knees of human donors with healthy or mildly degenerated tissues, and knees with late-stage OA from patients undergoing knee replacement surgery. Using a linear mixed effects model, we estimated the differential abundance of 6251 proteins between the three groups. We found 583 proteins upregulated in the late-stage OA, including MMP1, collagenase 3 and interleukin-6. Further, we selected 760 proteins (800 aptamers) based on absolute fold changes between the healthy and mild degeneration groups. To those, we applied Gaussian Graphical Models (GGMs) to analyze the conditional dependence of proteins and to identify key proteins and subnetworks involved in early OA pathogenesis. After regularization and stability selection, we identified 102 proteins involved in GGM networks. Notably, network complexity was lost in the protein graph for mild degeneration when compared to controls, suggesting a disruption in the regular protein interplay. Furthermore, among our main findings were several downregulated (in mild degeneration versus healthy) proteins with unique interactions in the healthy group, one of which, SLCO5A1, has not previously been associated with OA. Our results suggest that this protein is important for healthy joint function. Further, our data suggests that SF proteomics, combined with GGMs, can reveal novel insights into the molecular pathogenesis and identification of biomarker candidates for early-stage OA.
Collapse
Affiliation(s)
- Martin Rydén
- Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Amanda Sjögren
- Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Patrik Önnerfjord
- Department of Clinical Sciences Lund, Rheumatology, Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jon Tjörnstrand
- Department of Orthopaedics, Skåne University Hospital, Lund, Sweden
| | - Martin Englund
- Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Neserin Ali
- Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Knapik M, Żelazo DA, Osowiecka K, Krajewska-Włodarczyk M. Efficacy of Anti-Interleukin-1 Therapeutics in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials from the Years 2000 to 2023. J Clin Med 2024; 13:2859. [PMID: 38792403 PMCID: PMC11121880 DOI: 10.3390/jcm13102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Objectives: This study aimed to evaluate the efficacy of anti-interleukin-1 therapeutics for treating knee osteoarthritis (KOA). Our research included interleukin-1 (IL-1) inhibitors, IL-1 antibodies and IL-1 receptor antagonists (IL-1 Ras). Methods: We systematically searched PubMed and Mendeley to find randomized control trials (RCTs) or clinical trials (CTs) of anti-interleukin-1 therapeutics in KOA from 2000 to 2023. The outcomes were changes in pain, function and stiffness scores. The research was conducted between November 2023 and January 2024. The risk of bias was assessed using Cochrane Risk of Bias tool RoB 2. Results: Analysis of the nine included studies showed a statistically significant difference in terms of the pain relief group (SMD = -0.20, 95% CI: -0.39 to -0.01, p = 0.0348), physical function improvement (SMD = -0.20, 95% CI: -0.39 to 0.00, p = 0.0479) and stiffness reduction (SMD = -0.22, 95% CI: -0.43 to 0.00, p = 0.0475) between anti-IL-1 therapeutics and placebo or nonsteroidal anti-inflammatory drugs (NSAIDs). However, when we separately analysed placebo and NSAIDs subgroups, the statistical significance was observed only in the placebo group. Our article was limited by the quality of the included RCTs. Two of the included trials were of poor methodological quality, and five showed selective reporting. Conclusions: The results of our study suggest that anti-IL-1 therapeutics might have better efficacy in KOA treatment than placebo or NSAIDs; yet, taking into account the limited availability of studies and data concerning anti-IL-1 in osteoarthritis treatment, we think that more high-quality RCTs on this subject are needed.
Collapse
Affiliation(s)
- Michalina Knapik
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Wojska Polskiego 30, 10-719 Olsztyn, Poland; (M.K.); (D.A.Ż.)
| | - Daniel Aleksander Żelazo
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Wojska Polskiego 30, 10-719 Olsztyn, Poland; (M.K.); (D.A.Ż.)
| | - Karolina Osowiecka
- Department of Psychology and Sociology of Health and Public Health, School of Public Health, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Wojska Polskiego 30, 10-719 Olsztyn, Poland; (M.K.); (D.A.Ż.)
| |
Collapse
|
10
|
Han T, Zhu T, Lu Y, Wang Q, Bian H, Chen J, Qiao L, He TC, Zheng Q. Collagen type X expression and chondrocyte hypertrophic differentiation during OA and OS development. Am J Cancer Res 2024; 14:1784-1801. [PMID: 38726262 PMCID: PMC11076255 DOI: 10.62347/jwgw7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.
Collapse
Affiliation(s)
- Tiaotiao Han
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Tianxiang Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Department of Human Anatomy, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Huiqin Bian
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jinnan Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Longwei Qiao
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Tong-Chuan He
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
11
|
Grol MW. The evolving landscape of gene therapy strategies for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:372-384. [PMID: 38199296 DOI: 10.1016/j.joca.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
Fang C, Zhong R, Lu S, Yu G, Liu Z, Yan C, Gao J, Tang Y, Wang Y, Zhao Q, Feng X. TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int J Biol Sci 2024; 20:1992-2007. [PMID: 38617547 PMCID: PMC11008261 DOI: 10.7150/ijbs.91519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/03/2024] [Indexed: 04/16/2024] Open
Abstract
Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.
Collapse
Affiliation(s)
- Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Rui Zhong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Shuai Lu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Gang Yu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Zhilin Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Chengyuan Yan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jingyu Gao
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Yang Tang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Yingming Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Qichun Zhao
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
13
|
Marrero - Berrios I, Salter SE, Hirday R, Rabolli CP, Tan A, Hung CT, Schloss RS, Yarmush ML. In vitro inflammatory multi-cellular model of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100432. [PMID: 38288345 PMCID: PMC10823137 DOI: 10.1016/j.ocarto.2023.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Objective Osteoarthritis (OA) is a chronic joint disease, with limited treatment options, characterized by inflammation and matrix degradation, and resulting in severe pain or disability. Progressive inflammatory interaction among key cell types, including chondrocytes and macrophages, leads to a cascade of intra- and inter-cellular events which culminate in OA induction. In order to investigate these interactions, we developed a multi-cellular in vitro OA model, to characterize OA progression, and identify and evaluate potential OA therapeutics in response to mediators representing graded levels of inflammatory severity. Methods We compared macrophages, chondrocytes and their co-culture responses to "low" Interleukin-1 (IL-1) or "high" IL-1/tumor necrosis factor (IL-1/TNF) levels of inflammation. We also investigated response changes following the administration of dexamethasone (DEX) or mesenchymal stromal cell (MSC) treatment via a combination of gene expression and secretory changes, reflecting not only inflammation, but also chondrocyte function. Results Inflamed chondrocytes presented an osteoarthritic-like phenotype characterized by high gene expression of pro-inflammatory cytokines and chemokines, up-regulation of ECM degrading proteases, and down-regulation of chondrogenic genes. Our results indicate that while MSC treatment attenuates macrophage inflammation directly, it does not reduce chondrocyte inflammatory responses, unless macrophages are present as well. DEX however, can directly attenuate chondrocyte inflammation. Conclusions Our results highlight the importance of considering multi-cellular interactions when studying complex systems such as the articular joint. In addition, our approach, using a panel of both inflammatory and chondrocyte functional genes, provides a more comprehensive approach to investigate disease biomarkers, and responses to treatment.
Collapse
Affiliation(s)
| | - S. Elina Salter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rishabh Hirday
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Charles P. Rabolli
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Andrea Tan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rene S. Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
14
|
Somaiya KJ, Samal S, Boob MA. Physiotherapeutic Intervention Techniques for Knee Osteoarthritis: A Systematic Review. Cureus 2024; 16:e56817. [PMID: 38654798 PMCID: PMC11037114 DOI: 10.7759/cureus.56817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Globally, knee osteoarthritis (KOA) is the leading cause of disability. The most prevalent complaints associated with KOA are knee pain, joint stiffness, and weakness in the muscles of the lower limbs. These symptoms impede movement and result in functional limitations. As a result, people with KOA have a lower quality of life. For all patient groups with knee OA, an effective rehabilitation program focuses on improving knee range of motion, isometric quadriceps strength, and productivity level while reducing discomfort. The American College of Rheumatology (ACR) categorization criteria for KOA, research on KOA physiotherapy, and reviews covering various physical therapy interventions, including exercise, physical modalities, and patient education, were used to narrow down the pool of 180 systematic reviews to 15 articles. Google Scholar, PubMed, the Cochrane Library, and EMBASE were the databases that were used. The following keyword combinations were included in our search: KOA and physiotherapy or interventions or exercises, strengthening and stretching, concentric and eccentric training. Through our analysis, we identified a few methods that, in addition to standard therapy, could be used in clinical settings for people with osteoarthritis in the knee. It has been shown that Mulligan, Pilates, Kinesiotaping, Aquatic Therapy, and other current therapies are effective. The study employed a broad range of results. This review concludes that rather than relying solely on conventional therapy, it is preferable to combine a number of the most current physiotherapy techniques with it.
Collapse
Affiliation(s)
- Kamya J Somaiya
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Subrat Samal
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manali A Boob
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
15
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
16
|
Singh N, Bhattacharjee A, Kumar P, Katti DS. Targeting multiple disease hallmarks using a synergistic disease-modifying drug combination ameliorates osteoarthritis via inhibition of senescence and inflammation. Life Sci 2023; 334:122212. [PMID: 37890697 DOI: 10.1016/j.lfs.2023.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
AIMS Osteoarthritis (OA), is a debilitating disease characterized by progressive cartilage degradation, synovial inflammation, and chondrocyte senescence. Various treatment agents independently targeting these hallmarks have been investigated. However, due to the complex multifaceted nature of OA, no disease-modifying osteoarthritis drugs are clinically available. In an attempt to overcome this, we developed a combinatorial approach and demonstrated the efficacy of TsC [Tissue inhibitor of metalloproteinase-3 (TIMP3) + sulfated carboxymethylcellulose (sCMC)] and piperlongumine (PL) combination for the amelioration of OA in a goat ex vivo OA model. MAIN METHODS The efficacy of the drug combination was evaluated using the goat ex vivo OA explant model and results were validated in clinically relevant human OA cartilage explants. The chondroprotective effects were evaluated in terms of reduced inflammation and cartilage matrix loss, reduction in chondrosenescence, and reduced oxidative stress. KEY FINDINGS A combination of TsC and PL (TsC-PL) significantly reduced inflammation, cartilage matrix loss, chondrosenescence, and oxidative stress in the goat ex vivo OA model and showed chondroprotective effects. Further, similar chondroprotective effects were observed in human OA cartilage. Additionally, the coefficient of drug interaction analysis indicated that the combination of TsC and PL had a synergistic effect in reducing matrix degrading proteases and inflammation (goat ex vivo OA model) and Reactive oxygen species (ROS) production (human OA cartilage). SIGNIFICANCE Combinatorial treatment with TsC and PL demonstrated potential disease-modifying effects for the treatment of osteoarthritis via inhibition of inflammation and senescence and supports the usage of treatment strategies targeting multiple pathological factors of OA simultaneously.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit Bhattacharjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Praganesh Kumar
- Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur 208002, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
17
|
Gherghina FL, Mîndrilă I, Buteică SA, Bică G, Pisoschi CG, Biță CE, Paliu IA, Rogoveanu OC. The Potential Benefic Effect of Nicotinamide Riboside in Treating a Murine Model of Monoiodoacetate-Induced Knee Osteoarthritis. J Clin Med 2023; 12:6920. [PMID: 37959383 PMCID: PMC10650314 DOI: 10.3390/jcm12216920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Knee osteoarthritis (KOA), one of the most common orthopedic disorders concerning the adult population worldwide, is a condition characterized by progressive destruction of the articular cartilage and the presence of an inflammatory process. The aim of our study was to assess whether nicotinamide riboside (NR), a popular anti-aging supplement, can reduce the rate of cartilage destruction and alleviate the inflammatory response compared to the commonly prescribed collagen supplement in a murine monoiodoacetate (MIA)-induced KOA model. Twenty Wistar rats were randomly assigned to 4 groups: sham (S), MIA and NR, MIA and hydrolyzed collagen (HC), and MIA. At the end of the experiment, the right knees and blood samples were collected for histological assessment and biochemical evaluation of nitric oxide, malondialdehyde, total antioxidant capacity, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase, myeloperoxidase, and tumoral necrosis factor-alpha (TNF-α). The study determined that the treatment with NR in a similar dose with HC decreased blood/serum levels of oxidative stress biomarkers and the histological lesions in almost the same manner. The present findings suggest that NR may exhibit chondroprotective and anti-inflammatory effects in MIA-induced KOA in rats.
Collapse
Affiliation(s)
- Florin-Liviu Gherghina
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ion Mîndrilă
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Sandra-Alice Buteică
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Bică
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Cătălina-Gabriela Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Cristina-Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Iulia-Alexandra Paliu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Otilia-Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| |
Collapse
|
18
|
Zheng M, Li Z, Feng Y, Hou S, Zhang J, Kang C. The role of CD14 and CSF1R in osteoarthritis and gastritis. Medicine (Baltimore) 2023; 102:e35567. [PMID: 37904379 PMCID: PMC10615460 DOI: 10.1097/md.0000000000035567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
Osteoarthritis (OA) is a non-inflammatory degenerative joint disease that mainly involves articular cartilage damage and involves the whole joint tissue. Gastritis is a common stomach disorder, typically referring to inflammation or lesions of the gastric mucosa. However, the relationship between CD14 and colony stimulating factor-1 receptor (CSF1R) and these 2 diseases is not yet clear. OA datasets GSE46750, GSE82107 and gastritis datasets GSE54043 profiles were downloaded from gene expression omnibus databases generated by GPL10558 and GPL570.The R package limma was used to screen differentially expressed genes (DEGs). Weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis and comparative toxicogenomics database analysis were performed. TargetScan was used to screen miRNAs regulating central DEGs. A total of 568 DEGs were identified. According to the gene ontology (GO) and biological processes analysis, they were mainly enriched in ATP metabolism negative regulation, toll-like receptor TLR1:TLR2 signaling pathway, and intracellular transport. The enrichment terms for OA and gastritis were similar to the GO and Kyoto encyclopedia of gene and genome enrichment terms of DEGs, mainly enriched in ATP metabolism negative regulation, secretion granules, transmembrane receptor protein kinase activity, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, and TGF-β signaling pathway. In the Metascape enrichment projects, GO enrichment projects showed functions related to cell-cell receptor interaction, cell secretion, and growth. Two core genes were identified through the construction and analysis of the protein-protein interaction network. The core genes (CD14 and CSF1R) exhibited high expression in OA and gastritis samples and low expression in normal samples. Comparative toxicogenomics database analysis revealed associations between core genes (CD14 and CSF1R) and diseases such as OA, osteoporosis, gastritis, juvenile arthritis, diarrhea, and inflammation. CD14 and CSF1R are highly expressed in OA and gastritis, making them potential therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, China
| | - Zheng Li
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, China
| | - Yingfa Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| | - Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| |
Collapse
|
19
|
Zheng M, Li Z, Feng Y, Zhang X. CD14 and CSF1R as developmental molecular targets for the induction of osteoarthritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:184-198. [PMID: 37693684 PMCID: PMC10492034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/29/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a non-inflammatory degenerative joint disease that mainly involves articular cartilage damage and involves the whole joint tissue. However, the relationship between CD14 and CSF1R and osteoarthritis remains unclear. The aim of this study was to explore the important role of CD14 and CSF1R in osteoarthritis and provide a new direction for its prevention and treatment. METHOD The osteoarthritis datasets GSE46750 and GSE82107 were downloaded from gene expression omnibus (GEO) database generated by GPL10558 and GPL570. R package limma was used to screen differentially expressed genes (DEDs). Weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of a protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA), and comparative toxicogenomics database (CTD) analysis were performed. TargetScan screened miRNAs that regulated central DEGs. RESULTS 687 DEGs were identified. According to gene ontology (GO), they were mainly concentrated in inflammatory response, IL-17 signaling pathway, rheumatoid arthritis, exercise, and regulation of response to external stimuli. The enrichment items are similar to the GO Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment items of DEGs. These were mainly concentrated in exercise, inflammatory response, defense response, collagen containing extracellular matrix, and receptor regulator activity. In an enrichment project of Metascape, GO had inflammatory response, SARS-CoV-2 signal pathway network map, PIDIL8CXCR1 pathway, regulation of bone remodeling and endochondral ossification. 20 core genes were obtained by PPI network construction and analysis. Gene expression heat map showed that core genes (C1QC, CSF1R, CD14, TYROBP, HLA-DRA, C1QB, FCER1G, S100A9, HCLS1, WAS, BTK, TREM1) were highly expressed in osteoarthritis synovial tissues and were low in normal synovial tissues. CTD analysis showed that twelve genes (C1QC, CSF1R, CD14, TYROBP, HLA-DRA, C1QB, FCER1G, S100A9, HCLS1, WAS, BTK, TREM1) were found to be associated with inflammation, necrosis, gout, acute myeloid leukemia and thrombocytopenia. CONCLUSION CD14 and CSF1R are highly expressed in osteoarthritis and may be therapeutic targets for osteoarthritis.
Collapse
Affiliation(s)
- Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of BaodingNo. 57 Fanyang Zhong Road, Zhuozhou 072750, Hebei, China
| | - Zheng Li
- Department of Orthopedics, The Second Central Hospital of BaodingNo. 57 Fanyang Zhong Road, Zhuozhou 072750, Hebei, China
| | - Yingfa Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical UniversityNo. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical UniversityNo. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
20
|
Julovi SM, Dao A, Trinh K, O'Donohue AK, Shu C, Smith S, Shingde M, Schindeler A, Rogers NM, Little CB. Disease-modifying interactions between chronic kidney disease and osteoarthritis: a new comorbid mouse model. RMD Open 2023; 9:e003109. [PMID: 37562858 PMCID: PMC10423836 DOI: 10.1136/rmdopen-2023-003109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE The prevalence of comorbid chronic kidney disease (CKD) and osteoarthritis (OA) is increasing globally. While sharing common risk factors, the mechanism and consequences of concurrent CKD-OA are unclear. The aims of the study were to develop a preclinical comorbid model, and to investigate the disease-modifying interactions. METHODS Seventy (70) male 8-10 week-old C57BL/6 mice were subjected to 5/6 nephrectomy (5/6Nx)±destabilisation of medial meniscus (DMM) or sham surgery. OA pathology and CKD were assessed 12 weeks postinduction by blinded histology scoring, micro-CT, immunohistochemistry for osteoclast and matrix metalloproteinase (MMP)-13 activity, and serum analysis of bone metabolic markers. RESULTS The 5/6Nx model recapitulated characteristic features of CKD, with renal fibrosis and deranged serum alkaline phosphatase, calcium and phosphate. There was no histological evidence of cartilage pathology induced by 5/6Nx alone, however, synovial MMP-13 expression and subchondral bone osteoclastic activity were increased (p<0.05), with accompanying reductions (p<0.05) in subchondral trabecular bone, bone volume and mineral density. DMM significantly (p<0.05) increased tibiofemoral cartilage damage, subchondral bone sclerosis, marginal osteophytes and synovitis, in association with increased cartilage and synovial MMP-13. DMM alone induced (p<0.05) renal fibrosis, proteinuria and increased (p<0.05) 5/6Nx-induced serum urea. However, DMM in 5/6Nx-mice resulted in significantly reduced (p<0.05) cartilage pathology and marginal osteophyte development, in association with reduced subchondral bone volume and density, and inhibition of 5/6Nx-induced subchondral bone osteoclast activation. CONCLUSION This study assessed a world-first preclinical comorbid CKD-OA model. Our findings demonstrate significant bidirectional disease-modifying interaction between CKD and OA.
Collapse
Affiliation(s)
- Sohel M Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Aiken Dao
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Bioengineering & Molecular Medicine (BAMM) Laboratory, the Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra K O'Donohue
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Bioengineering & Molecular Medicine (BAMM) Laboratory, the Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Cindy Shu
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Susan Smith
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Meena Shingde
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Wentworthville, New South Wales, Australia
| | - Aaron Schindeler
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Bioengineering & Molecular Medicine (BAMM) Laboratory, the Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher B Little
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
21
|
Wang Z, Bao H, Hou J, Ju B, Ji Y. Circ-NFKB1 sponges miR-203a-5p to regulate ERBB4 expression and promotes IL-1β induced chondrocytes apoptosis. J Orthop Surg Res 2023; 18:528. [PMID: 37491357 PMCID: PMC10367401 DOI: 10.1186/s13018-023-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic disease of the bones and joints that commonly affects middle-aged and elderly individuals, characterized by the degeneration of articular cartilage and inflammation of the joints. The molecular mechanisms of OA urgently need to be further examined. Our study intended to uncover circ-NFKB1/miR-203a-5p/ERBB4 axis in regulating interleukin-1β (IL-1β) induced chondrocytes apoptosis. METHODS GSE178724, GSE79258 and GSE169077 were downloaded from Gene Expression Omibus (GEO) database and differentially expressed circRNAs, miRNAs and mRNAs were obtained by R software. Annexin V assay was used to determine cell apoptosis rate. ELISA was further performed to identify the inflammation response. Dual-luciferase reporter gene assay was conducted to examine the combination among circ-NFKB1, miR-203a-5p and ERBB4. RESULTS Our research demonstrated that circ-NFKB1 and ERBB4 were significantly upregulated through bioinformatic analysis. MiR-203a-5p was significantly downregulated through bioinformatic analysis. Silencing of circ-NFKB1 notably inhibited the IL-1β induced chondrocytes apoptosis and upregulated ERBB4 expression. Through prediction on bioinformatics analysis, miR-203a-5p was the target binding circ-NFKB1, and ERBB4 was the potential target of miR-203a-5p. Subsequently, these changes induced by the silencing of circ-NFKB1 were reversed upon addition of pcDNA/ERBB4. CONCLUSIONS Silencing circ-NFKB1 could sponge miR-203a-5p to regulate ERBB4 expression and alleviate OA progression.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Orthopedics, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Hongwei Bao
- Department of Orthopedics, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Jingzhao Hou
- Department of Orthopedics, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Bin Ju
- Department of Medical Imaging, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, 28 No, Zhongzhou Road, Jingjiang, Taizhou City, 214500, Jiangsu Province, China.
| |
Collapse
|
22
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
23
|
Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Osteoarthritis genetic risk acting on the galactosyltransferase gene COLGALT2 has opposing functional effects in articulating joint tissues. Arthritis Res Ther 2023; 25:83. [PMID: 37208701 DOI: 10.1186/s13075-023-03066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Investigation of cartilage and chondrocytes has revealed that the osteoarthritis risk marked by the independent DNA variants rs11583641 and rs1046934 mediate their effects by decreasing the methylation status of CpG dinucleotides in enhancers and increasing the expression of shared target gene COLGALT2. We set out to investigate if these functional effects operate in a non-cartilaginous joint tissue. METHODS Nucleic acids were extracted from the synovium of osteoarthritis patients. Samples were genotyped, and DNA methylation was quantified by pyrosequencing at CpGs within the COLGALT2 enhancers. CpGs were tested for enhancer effects using a synovial cell line and a reporter gene assay. DNA methylation was altered using epigenetic editing, with the impact on gene expression determined using quantitative polymerase chain reaction. In silico analysis complemented laboratory experiments. RESULTS The rs1046934 genotype did not associate with DNA methylation or COLGALT2 expression in the synovium, whereas the rs11583641 genotype did. Surprisingly, the effects for rs11583641 were opposite to those previously observed in cartilage. Epigenetic editing in synovial cells revealed that enhancer methylation is causally linked to COLGALT2 expression. CONCLUSIONS This is the first direct demonstration for osteoarthritis genetic risk of a functional link between DNA methylation and gene expression operating in opposite directions between articular joint tissues. It highlights pleiotropy in the action of osteoarthritis risk and provides a cautionary note in the application of future genetically based osteoarthritis therapies: an intervention that decreases the detrimental effect of a risk allele in one joint tissue may inadvertently increase its detrimental effect in another joint tissue.
Collapse
Affiliation(s)
- Yulia S Kehayova
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Sarah J Rice
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK.
| | - John Loughlin
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
24
|
Liu W, Feng M, Xu P. From regeneration to osteoarthritis in the knee joint: The role shift of cartilage-derived progenitor cells. Front Cell Dev Biol 2022; 10:1010818. [PMID: 36340024 PMCID: PMC9630655 DOI: 10.3389/fcell.2022.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
A mount of growing evidence has proven that cartilage-derived progenitor cells (CPCs) harbor strong proliferation, migration, andmultiple differentiation potentials over the past 2 decades. CPCs in the stage of immature tissue play an important role in cartilage development process and injured cartilage repair in the young and active people. However, during maturation and aging, cartilage defects cannot be completely repaired by CPCs in vivo. Recently, tissue engineering has revealed that repaired cartilage defects with sufficient stem cell resources under good condition and bioactive scaffolds in vitro and in vivo. Chronic inflammation in the knee joint limit the proliferation and chondrogenesis abilities of CPCs, which further hampered cartilage healing and regeneration. Neocartilage formation was observed in the varus deformity of osteoarthritis (OA) patients treated with offloading technologies, which raises the possibility that organisms could rebuild cartilage structures spontaneously. In addition, nutritionmetabolismdysregulation, including glucose and free fatty acid dysregulation, could influence both chondrogenesis and cartilage formation. There are a few reviews about the advantages of CPCs for cartilage repair, but few focused on the reasons why CPCs could not repair the cartilage as they do in immature status. A wide spectrum of CPCs was generated by different techniques and exhibited substantial differences. We recently reported that CPCs maybe are as internal inflammation sources during cartilage inflammaging. In this review, we further streamlined the changes of CPCs from immature development to maturation and from healthy status to OA advancement. The key words including “cartilage derived stem cells”, “cartilage progenitor cells”, “chondroprogenitor cells”, “chondroprogenitors” were set for latest literature searching in PubMed and Web of Science. The articles were then screened through titles, abstracts, and the full texts in sequence. The internal environment including long-term inflammation, extendedmechanical loading, and nutritional elements intake and external deleterious factors were summarized. Taken together, these results provide a comprehensive understanding of the underlying mechanism of CPC proliferation and differentiation during development, maturation, aging, injury, and cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Wenguang Liu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Meng Feng
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Xu,
| |
Collapse
|
25
|
Xu J, Ma J, Zeng Y, Si H, Wu Y, Zhang S, Shen B. A Cross-Tissue Transcriptome-Wide Association Study Identifies Novel Susceptibility Genes for Juvenile Idiopathic Arthritis in Asia and Europe. Front Immunol 2022; 13:941398. [PMID: 35967305 PMCID: PMC9367689 DOI: 10.3389/fimmu.2022.941398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children, and its pathogenesis is still unclear. Genome-wide association studies (GWASs) of JIA have identified hundreds of risk factors, but few of them implicated specific biological mechanisms. Methods A cross-tissue transcriptome-wide association study (TWAS) was performed with the functional summary-based imputation software (FUSION) tool based on GWAS summary datasets (898 JIA patients and 346,102 controls from BioBank Japan (BBJ)/FinnGen). The gene expression reference weights of skeletal muscle and the whole blood were obtained from the Genotype-Tissue Expression (GTExv8) project. JIA-related genes identified by TWAS findings genes were further compared with the differentially expressed genes (DEGs) identified by the mRNA expression profile of JIA from the Gene Expression Omnibus (GEO) database (accession number: GSE1402). Last, candidate genes were analyzed using functional enrichment and annotation analysis by Metascape to examine JIA-related gene sets. Results The TWAS identified 535 significant genes with P < 0.05 and contains 350 for Asian and 195 for European (including 10 genes both expressed in Asian and European), such as CDC16 (P = 1.72E-03) and PSMD5-AS1 (P = 3.65E-02). Eight overlapping genes were identified based on TWAS results and DEGs of JIA patients, such as SIRPB1 (PTWAS = 4.21E-03, PDEG = 1.50E-04) and FRAT2 (PTWAS = 2.82E-02, PDEG = 1.43E-02). Pathway enrichment analysis of TWAS identified 183 pathways such as cytokine signaling in the immune system and cell adhesion molecules. By integrating the results of DEGs pathway and process enrichment analyses, 19 terms were identified such as positive regulation of T-cell activation. Conclusion By conducting two populations TWAS, we identified a group of JIA-associated genes and pathways, which may provide novel clues to uncover the pathogenesis of JIA.
Collapse
|