1
|
Islam J, Agista AZ, Watanabe K, Nochi T, Aso H, Ohsaki Y, Koseki T, Komai M, Shirakawa H. Fermented rice bran supplementation attenuates chronic colitis-associated extraintestinal manifestations in female C57BL/6N mice. J Nutr Biochem 2022; 99:108855. [PMID: 34517096 DOI: 10.1016/j.jnutbio.2021.108855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Patients with inflammatory bowel disease (IBD) have higher incidence of extraintestinal manifestations (EIM), including liver disorders, sarcopenia, and neuroinflammation. Fermented rice bran (FRB), generated from rice bran (RB), is rich in bioactive compounds, and exhibits anti-colitis activity. However, its role in EIM prevention is still unclear. Here, for the first time, we investigated whether EIM in female C57Bl/6N mice is attenuated by FRB supplementation. EIM was induced by repeated administration of 1.5% dextran sulfate sodium (DSS) in drinking water (4 d) followed by drinking water (12 d). Mice were divided into 3 groups-control (AIN93M), 10% RB, and 10% FRB. FRB ameliorated relapsing colitis and inflammation in muscle by significantly lowering proinflammatory cytokines Tnf-α and Il-6 in serum and advanced glycation end product-specific receptor (Ager) in serum and muscle when compared with the RB and control groups. As FRB reduced aspartate aminotransferase levels and oxidative stress, it might prevent liver disorders. FRB downregulated proinflammatory cytokine and chemokine transcripts responsible for neuroinflammation in the hippocampus and upregulated mRNA expression of G protein coupled receptors (GPRs), Gpr41 and Gpr43, in small and large intestines, which may explain the FRB-mediated protective mechanism. Hence, FRB can be used as a supplement to prevent IBD-associated EIM.
Collapse
Affiliation(s)
- Jahidul Islam
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Afifah Zahra Agista
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Royal JM, Reeves MA, Matoba N. Repeated Oral Administration of a KDEL-tagged Recombinant Cholera Toxin B Subunit Effectively Mitigates DSS Colitis Despite a Robust Immunogenic Response. Toxins (Basel) 2019; 11:E678. [PMID: 31756977 PMCID: PMC6950078 DOI: 10.3390/toxins11120678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cholera toxin B subunit (CTB), a non-toxic homopentameric component of Vibrio cholerae holotoxin, is an oral cholera vaccine antigen that induces an anti-toxin antibody response. Recently, we demonstrated that a recombinant CTB variant with a Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention motif (CTB-KDEL) exhibits colon mucosal healing effects that have therapeutic implications for inflammatory bowel disease (IBD). Herein, we investigated the feasibility of CTB-KDEL for the treatment of chronic colitis. We found that weekly oral administration of CTB-KDEL, dosed before or after the onset of chronic colitis, induced by repeated dextran sodium sulfate (DSS) exposure, could significantly reduce disease activity index scores, intestinal permeability, inflammation, and histological signs of chronicity. To address the consequences of immunogenicity, mice (C57BL/6 or C3H/HeJ strains) were pre-exposed to CTB-KDEL then subjected to DSS colitis and CTB-KDEL treatment. While the pre-dosing of CTB-KDEL elicited high-titer anti-drug antibodies (ADAs) of the immunoglobin A (IgA) isotype in the intestine of C57BL/6 mice, the therapeutic effects of CTB-KDEL were similar to those observed in C3H/HeJ mice, which showed minimal ADAs under the same experimental conditions. Thus, the immunogenicity of CTB-KDEL does not seem to impede the protein's mucosal healing efficacy. These results support the development of CTB-KDEL for IBD therapy.
Collapse
Affiliation(s)
- Joshua M. Royal
- James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Micaela A. Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|