1
|
Abstract
Gasdermins are effectors of pyroptosis downstream of diverse signaling pathways. Emerging evidence suggests that a number of post-translational modifications regulate the function of gasdermins in pyroptosis, a highly inflammatory form of cell death, and lytic or non-lytic secretion of intracellular contents. These include processing by different caspases and other proteases that may activate or suppress pyroptosis, ubiquitination by a bacterial E3 ligase that suppresses pyroptosis as an immune evasion mechanism, modifications at Cys residues in mammalian or microbial gasdermins that promote or inhibit pyroptosis, and potential phosphorylation that represses pyroptosis. Such diverse regulatory mechanisms by host and microbial proteases, ubiquitin ligases, acyltransferases, kinases and phosphatases may underlie the divergent physiological and pathological functions of gasdermins, and furnish opportunities for therapeutic targeting of gasdermins in infectious diseases and inflammatory disorders.
Collapse
Affiliation(s)
- Sai Li
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Syrena Bracey
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
2
|
Lee J, Oh ET, Lee E, Park HJ, Kim C. Induced cytotoxicity of peptides by intracellular native chemical ligation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intracellular NCL reaction of peptide with both N-terminal cysteine and C-terminal crypto-thioester with protecting groups occurs naturally in cancer cells, which endows peptide with induced cytotoxicity.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, Korea
| | - Eunkyung Lee
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Korea
| | - Heon Joo Park
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Korea
| |
Collapse
|
3
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Liu Z, Wang C, Yang J, Chen Y, Zhou B, Abbott DW, Xiao TS. Caspase-1 Engages Full-Length Gasdermin D through Two Distinct Interfaces That Mediate Caspase Recruitment and Substrate Cleavage. Immunity 2020; 53:106-114.e5. [PMID: 32553275 PMCID: PMC7382298 DOI: 10.1016/j.immuni.2020.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel β sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chuanping Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, TRY-21, La Jolla, CA 92037, USA
| | - Yinghua Chen
- Protein Expression Purification Crystallization and Molecular Biophysics Core, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bowen Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Dai S, Yang S, Hu X, Sun W, Tawa G, Zhu W, Schimmer AD, He C, Fang B, Zhu H, Zheng W. 17-Hydroxy Wortmannin Restores TRAIL's Response by Ameliorating Increased Beclin 1 Level and Autophagy Function in TRAIL-Resistant Colon Cancer Cells. Mol Cancer Ther 2019; 18:1265-1277. [PMID: 31092562 DOI: 10.1158/1535-7163.mct-18-1241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
Targeting of extrinsic apoptosis pathway by TNF-related apoptosis-inducing ligand (TRAIL) is an attractive approach for cancer therapy. However, two TRAIL drug candidates failed in clinical trials due to lack of efficacy. We identified 17-hydroxy wortmannin (17-HW) in a drug repurposing screen that resensitized TRAIL's response in the resistant colon cancer cells. The deficiency of caspase-8 in drug-resistant cells along with defects in apoptotic cell death was corrected by 17-HW, an inhibitor of PIK3C3-beclin 1 (BECN1) complex and autophagy activity. Further study found that BECN1 significantly increased in the TRAIL-resistant cells, resulting in increased autophagosome formation and enhanced autophagy flux. The extracellular domain (ECD) of BECN1 directly bound to the caspase-8 catalytic subunit (p10), leading to sequestration of caspase-8 in the autophagosome and its subsequent degradation. Inhibition of BECN1 restored the caspase-8 level and TRAIL's apoptotic response in the resistant colon cancer cells. An analysis of 120 colon cancer patient tissues revealed a correlation of a subgroup of patients (30.8%, 37/120) who have high BECN1 level and low caspase-8 level with a poor survival rate. Our study demonstrates that the increased BECN1 accompanied by enhanced autophagy activity is responsible for the TRAIL resistance, and a combination of TRAIL with a PIK3C3-BECN1 inhibitor is a promising therapeutic approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Sheng Dai
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,National Center for Advancing Translational Sciences (NCATS), NIH, Bethesda, Maryland
| | - Shu Yang
- National Center for Advancing Translational Sciences (NCATS), NIH, Bethesda, Maryland
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), NIH, Bethesda, Maryland
| | - Wei Sun
- National Center for Advancing Translational Sciences (NCATS), NIH, Bethesda, Maryland
| | - Gregory Tawa
- National Center for Advancing Translational Sciences (NCATS), NIH, Bethesda, Maryland
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, the George Washington University Medical School, Washington, D.C
| | | | - Chao He
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongbo Zhu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Zheng
- National Center for Advancing Translational Sciences (NCATS), NIH, Bethesda, Maryland.
| |
Collapse
|
6
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
7
|
N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc Natl Acad Sci U S A 2015; 112:13318-23. [PMID: 26453556 DOI: 10.1073/pnas.1517862112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromogranin A (ChgA) is an autoantigen for CD4(+) T cells in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). The natural ChgA-processed peptide, WE14, is a weak agonist for the prototypical T cell, BDC-2.5, and other ChgA-specific T-cell clones. Mimotope peptides with much higher activity share a C-terminal motif, WXRM(D/E), that is predicted to lie in the p5 to p9 position in the mouse MHC class II, IA(g7) binding groove. This motif is also present in WE14 (WSRMD), but at its N terminus. Therefore, to place the WE14 motif into the same position as seen in the mimotopes, we added the amino acids RLGL to its N terminus. Like the other mimotopes, RLGL-WE14, is much more potent than WE14 in T-cell stimulation and activates a diverse population of CD4(+) T cells, which also respond to WE14 as well as islets from WT, but not ChgA(-/-) mice. The crystal structure of the IA(g7)-RLGL-WE14 complex confirmed the predicted placement of the peptide within the IA(g7) groove. Fluorescent IA(g7)-RLGL-WE14 tetramers bind to ChgA-specific T-cell clones and easily detect ChgA-specific T cells in the pancreas and pancreatic lymph nodes of NOD mice. The prediction that many different N-terminal amino acid extensions to the WXRM(D/E) motif are sufficient to greatly improve T-cell stimulation leads us to propose that such a posttranslational modification may occur uniquely in the pancreas or pancreatic lymph nodes, perhaps via the mechanism of transpeptidation. This modification could account for the escape of these T cells from thymic negative selection.
Collapse
|
8
|
Conlan BF, Gillon AD, Craik DJ, Anderson MA. Circular proteins and mechanisms of cyclization. Biopolymers 2010; 94:573-83. [DOI: 10.1002/bip.21422] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Sahdev S, Saini KS, Hasnain SE. Baculovirus P35 protein: An overview of its applications across multiple therapeutic and biotechnological arenas. Biotechnol Prog 2009; 26:301-12. [DOI: 10.1002/btpr.339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Abstract
To prolong cell viability and facilitate replication, viruses have evolved multiple mechanisms to inhibit the host apoptotic response. Cellular proteases such as caspases and serine proteases are instrumental in promoting apoptosis. Thus, these enzymes are logical targets for virus-mediated modulation to suppress cell death. Four major classes of viral inhibitors antagonize caspase function: serpins, p35 family members, inhibitor of apoptosis proteins, and viral FLICE-inhibitory proteins. Viruses also subvert activity of the serine proteases, granzyme B and HtrA2/Omi, to avoid cell death. The combined efforts of viruses to suppress apoptosis suggest that this response should be avoided at all costs. However, some viruses utilize caspases during replication to aid virus protein maturation, progeny release, or both. Hence, a multifaceted relationship exists between viruses and the apoptotic response they induce. Examination of these interactions contributes to our understanding of both virus pathogenesis and the regulation of apoptotic enzymes in normal cellular functions.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| |
Collapse
|
11
|
Abstract
Apoptosis is a common cellular response to virus infection. However, many viruses have evolved strategies, such as the expression of anti-apoptotic proteins, to combat this response. One such family of anti-apoptotic viral proteins is the p35 family of caspase inhibitors, which are expressed by certain insect viruses. Expression of p35 prevents the host cell from undergoing apoptosis, thereby allowing for propagation of the virus. p35 family members are potent inhibitors of caspases. Members of the family fall into one of three groups that inhibit different classes of caspases. Since the discovery of the first p35 gene in 1991, the anti-apoptotic function of this protein family has been studied extensively. This unique type of protease inhibitor has proven to be extremely useful in the study of apoptosis in experimental settings ranging from nematodes to mammals.
Collapse
Affiliation(s)
- John C Means
- Molecular, Cellular & Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rollie J Clem
- Molecular, Cellular & Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Reactive-site cleavage residues confer target specificity to baculovirus P49, a dimeric member of the P35 family of caspase inhibitors. J Virol 2008; 82:7504-14. [PMID: 18508888 DOI: 10.1128/jvi.00231-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Baculovirus proteins P49 and P35 are potent suppressors of apoptosis in diverse organisms. Although related, P49 and P35 inhibit initiator and effector caspases, respectively, during infection of permissive insect cells. The molecular basis of this novel caspase specificity is unknown. To advance strategies for selective inhibition of the cell death caspases, we investigated biochemical differences between these baculovirus substrate inhibitors. We report here that P49 and P35 use similar mechanisms for stoichiometric inhibition that require caspase cleavage of their reactive site loops (RSL) and chemical contributions of a conserved N-terminal cysteine to stabilize the resulting inhibitory complex. Our data indicated that P49 functions as a homodimer that simultaneously binds two caspases. In contrast, P35 is a monomeric, monovalent inhibitor. P49 and P35 also differ in their RSL caspase recognition sequences. We tested the role of the P(4)-P(1) recognition motif for caspase specificity by monitoring virus-induced proteolytic processing of Sf-caspase-1, the principal effector caspase of the host insect Spodoptera frugiperda. When P49's TVTD recognition motif was replaced with P35's DQMD motif, P49 was impaired for inhibition of the initiator caspase that cleaves and activates pro-Sf-caspase-1 and instead formed a stable inhibitory complex with active Sf-caspase-1. In contrast, the effector caspase specificity of P35 was unaltered when P35's DQMD motif was replaced with TVTD. We concluded that the TVTD recognition motif is required but not sufficient for initiator caspase inhibition by P49. Our findings demonstrate a critical role for the P(4)-P(1) recognition site in caspase specificity by P49 and P35 and indicate that additional determinants are involved in target selection.
Collapse
|
13
|
Song JH, Liang CY, Chen XW. Baculovirus-mediated expression of p35 confers resistance to apoptosis in human embryo kidney 293 cells. Virol Sin 2008. [DOI: 10.1007/s12250-007-0037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Mittl PR, Grütter MG. Opportunities for structure-based design of protease-directed drugs. Curr Opin Struct Biol 2006; 16:769-75. [PMID: 17112720 DOI: 10.1016/j.sbi.2006.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/06/2006] [Accepted: 10/25/2006] [Indexed: 01/09/2023]
Abstract
As a result of the recent enormous technological progress, experimental structure determination has become an integral part of the development of drugs against disease-related target proteins. The post-translational modification of proteins is an important regulatory process in living organisms; one such example is lytic processing by peptidases. Many different peptidases represent disease targets and are being used in structure-based drug design approaches. The development of drugs such as aliskiren and tipranavir, which inhibit renin and HIV protease, respectively, testifies to the success of this approach.
Collapse
Affiliation(s)
- Peer Re Mittl
- Institute for Biochemistry, University of Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
15
|
Abstract
Some protease inhibitors use uncommon mechanisms to restrain the activity of their target enzymes. A recent paper in Chemistry and Biology (Lu et al., 2006) demonstrates a curious mechanism of inhibition of a caspase, relying on principles of native peptide ligation.
Collapse
Affiliation(s)
- Henning R Stennicke
- Department for Haemostasis Biochemistry, Biopharmaceuticals Research Unit, Novo Nordisk, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | | |
Collapse
|