1
|
Wilson TJ, Lilley DMJ. The potential versatility of RNA catalysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1651. [PMID: 33949113 DOI: 10.1002/wrna.1651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
It is commonly thought that in the early development of life on this planet RNA would have acted both as a store of genetic information and as a catalyst. While a number of RNA enzymes are known in contemporary cells, they are largely confined to phosphoryl transfer reactions, whereas an RNA based metabolism would have required a much greater chemical diversity of catalysis. Here we discuss how RNA might catalyze a wider variety of chemistries, and particularly how information gleaned from riboswitches could suggest how ribozymes might recruit coenzymes to expand their chemical range. We ask how we might seek such activities in modern biology. This article is categorized under: RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions Regulatory RNAs/RNAi/Riboswitches > Riboswitches RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
3
|
Smathers CM, Robart AR. The mechanism of splicing as told by group II introns: Ancestors of the spliceosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194390. [PMID: 31202783 DOI: 10.1016/j.bbagrm.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022]
Abstract
Spliceosomal introns and self-splicing group II introns share a common mechanism of intron splicing where two sequential transesterification reactions remove intron lariats and ligate exons. The recent revolution in cryo-electron microscopy (cryo-EM) has allowed visualization of the spliceosome's ribozyme core. Comparison of these cryo-EM structures to recent group II intron crystal structures presents an opportunity to draw parallels between the RNA active site, substrate positioning, and product formation in these two model systems of intron splicing. In addition to shared RNA architectural features, structural similarity between group II intron encoded proteins (IEPs) and the integral spliceosomal protein Prp8 further support a shared catalytic core. These mechanistic and structural similarities support the long-held assertion that group II introns and the eukaryotic spliceosome have a common evolutionary origin. In this review, we discuss how recent structural insights into group II introns and the spliceosome facilitate the chemistry of splicing, highlight similarities between the two systems, and discuss their likely evolutionary connections. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Claire M Smathers
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America.
| |
Collapse
|
4
|
Molina-Sánchez MD, Toro N. DNA cleavage and reverse splicing of ribonucleoprotein particles reconstituted in vitro with linear RmInt1 RNA. RNA Biol 2019; 16:930-939. [PMID: 30943851 DOI: 10.1080/15476286.2019.1601379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The RmInt1 group II intron is an efficient self-splicing mobile retroelement that catalyzes its own excision as lariat, linear and circular molecules. In vivo, the RmInt1 lariat and the reverse transcriptase (IEP) it encodes form a ribonucleoprotein particle (RNP) that recognizes the DNA target for site-specific full intron insertion via a two-step reverse splicing reaction. RNPs containing linear group II intron RNA are generally thought to be unable to complete the reverse splicing reaction. Here, we show that reconstituted in vitro RNPs containing linear RmInt1 ΔORF RNA can mediate the cleavage of single-stranded DNA substrates in a very precise manner with the attachment of the intron RNA to the 3´exon as the first step of a reverse splicing reaction. Notably, we also observe molecules in which the 5´exon is linked to the RmInt1 RNA, suggesting the completion of the reverse splicing reaction, albeit rather low and inefficiently. That process depends on DNA target recognition and can be successful completed by RmInt1 RNPs with linear RNA displaying 5´ modifications.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- a Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems , Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| | - Nicolás Toro
- a Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems , Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| |
Collapse
|
5
|
Pechlaner M, Dominguez-Martin A, Sigel RKO. Influence of pH and Mg(ii) on the catalytic core domain 5 of a bacterial group II intron. Dalton Trans 2018; 46:3989-3995. [PMID: 28265619 DOI: 10.1039/c6dt04784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA molecules fold into complex structures that allow them to perform specific functions. To compensate the relative lack of diversity of functional groups within nucleotides, metal ions work as crucial co-factors. In addition, shifted pKas are observed in RNA, enabling acid-base reactions at ambient pH. The central catalytic domain 5 (D5) hairpin of the Azotobacter vinelandii group II intron undergoes both metal ion binding and pH dependence, presumably playing an important functional role in the ribozyme's reaction. By NMR spectroscopy we have here characterized the metal ion binding sites and affinities for the hairpin's internal G-A mismatch, bulge, and pentaloop. The influence of Mg(ii) and pH on the local conformation of the catalytically crucial region is also explored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- M Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - A Dominguez-Martin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - R K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| |
Collapse
|
6
|
Galej WP, Toor N, Newman AJ, Nagai K. Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. Chem Rev 2018; 118:4156-4176. [PMID: 29377672 DOI: 10.1021/acs.chemrev.7b00499] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear pre-mRNA splicing and group II intron self-splicing both proceed by two-step transesterification reactions via a lariat intron intermediate. Recently determined cryo-electron microscopy (cryo-EM) structures of catalytically active spliceosomes revealed the RNA-based catalytic core and showed how pre-mRNA substrates and reaction products are positioned in the active site. These findings highlight a strong structural similarity to the group II intron active site, strengthening the notion that group II introns and spliceosomes evolved from a common ancestor. Prp8, the largest and most conserved protein in the spliceosome, cradles the active site RNA. Prp8 and group II intron maturase have a similar domain architecture, suggesting that they also share a common evolutionary origin. The interactions between maturase and key group II intron RNA elements, such as the exon-binding loop and domains V and VI, are recapitulated in the interactions between Prp8 and key elements in the spliceosome's catalytic RNA core. Structural comparisons suggest that the extensive RNA scaffold of the group II intron was gradually replaced by proteins as the spliceosome evolved. A plausible model of spliceosome evolution is discussed.
Collapse
Affiliation(s)
- Wojciech P Galej
- EMBL Grenoble , 71 Avenue des Martyrs , 38042 Grenoble Cedex 09 , France
| | - Navtej Toor
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| |
Collapse
|
7
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
8
|
Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding. J Biol Inorg Chem 2017; 23:167-177. [DOI: 10.1007/s00775-017-1519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
9
|
Liu X, Chen Y, Fierke CA. Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 2017; 139:17457-17463. [PMID: 29116782 PMCID: PMC6020041 DOI: 10.1021/jacs.7b08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the function of metal ions and the RNA moieties, particularly nucleobases, that bind metal ions is important in RNA catalysis. Here we combine single-atom and abasic substitutions to probe functions of conserved nucleobases in ribonuclease P (RNase P). Structural and biophysical studies of bacterial RNase P propose direct coordination of metal ions by the nucleobases of conserved uridine and guanosine in helix P4 of the RNA subunit (P RNA). To biochemically probe the function of metal ion interactions, we substituted the universally conserved bulged uridine (U51) in the P4 helix of circularly permuted Bacillus subtilis P RNA with 4-thiouridine, 4-deoxyuridine, and abasic modifications and G378/379 with 2-aminopurine, N7-deazaguanosine, and 6-thioguanosine. The functional group modifications of U51 decrease RNase P-catalyzed phosphodiester bond cleavage 16- to 23-fold, as measured by the single-turnover cleavage rate constant. The activity of the 4-thiouridine RNase P is partially rescued by addition of Cd(II) or Mn(II) ions. This is the first time a metal-rescue experiment provides evidence for inner-sphere divalent metal ion coordination with a nucleobase. Modifications of G379 modestly decrease the cleavage activity of RNase P, suggesting outer-sphere coordination of O6 on G379 to a metal ion. These data provide biochemical evidence for catalytically important interactions of the P4 helix of P RNA with metal ions, demonstrating that the bulged uridine coordinates at least one catalytic metal ion through an inner-sphere interaction. The combination of single-atom and abasic nucleotide substitutions provides a powerful strategy to probe functions of conserved nucleobases in large RNAs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
Costa M, Walbott H, Monachello D, Westhof E, Michel F. Crystal structures of a group II intron lariat primed for reverse splicing. Science 2017; 354:354/6316/aaf9258. [PMID: 27934709 DOI: 10.1126/science.aaf9258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
The 2'-5' branch of nuclear premessenger introns is believed to have been inherited from self-splicing group II introns, which are retrotransposons of bacterial origin. Our crystal structures at 3.4 and 3.5 angstrom of an excised group II intron in branched ("lariat") form show that the 2'-5' branch organizes a network of active-site tertiary interactions that position the intron terminal 3'-hydroxyl group into a configuration poised to initiate reverse splicing, the first step in retrotransposition. Moreover, the branchpoint and flanking helices must undergo a base-pairing switch after branch formation. A group II-based model of the active site of the nuclear splicing machinery (the spliceosome) is proposed. The crucial role of the lariat conformation in active-site assembly and catalysis explains its prevalence in modern splicing.
Collapse
Affiliation(s)
- Maria Costa
- Group II introns as ribozymes and retrotransposons, Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), University Paris-Sud, University Paris-Saclay, 1 Avenue de la Terrasse, Bâtiment 26, 91198 Gif-sur-Yvette cedex, France.
| | - Hélène Walbott
- Structure and Dynamics of RNA, I2BC, UMR 9198 CNRS, CEA, University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Dario Monachello
- Group II introns as ribozymes and retrotransposons, Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), University Paris-Sud, University Paris-Saclay, 1 Avenue de la Terrasse, Bâtiment 26, 91198 Gif-sur-Yvette cedex, France
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS, University of Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - François Michel
- Group II introns as ribozymes and retrotransposons, Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), University Paris-Sud, University Paris-Saclay, 1 Avenue de la Terrasse, Bâtiment 26, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
11
|
Zhou W, Saran R, Huang PJJ, Ding J, Liu J. An Exceptionally Selective DNA Cooperatively Binding Two Ca2+Ions. Chembiochem 2017; 18:518-522. [PMID: 28087991 DOI: 10.1002/cbic.201600708] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| | - Runjhun Saran
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
| | - Juewen Liu
- School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| |
Collapse
|
12
|
Guha TK, Hausner G. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease. PLoS One 2016; 11:e0150097. [PMID: 26909494 PMCID: PMC4801052 DOI: 10.1371/journal.pone.0150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
In Chaetomium thermophilum (DSM 1495) within the mitochondrial DNA (mtDNA) small ribosomal subunit (rns) gene a group IIA1 intron interrupts an open reading frame (ORF) encoded within a group I intron (mS1247). This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase). Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo) in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2) stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2) to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
13
|
Rowley PA, Kachroo AH, Ma CH, Maciaszek AD, Guga P, Jayaram M. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination. Nucleic Acids Res 2015; 43:6023-37. [PMID: 25999343 PMCID: PMC4499138 DOI: 10.1093/nar/gkv513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 11/14/2022] Open
Abstract
Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Aashiq H Kachroo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna D Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Skilandat M, Sigel RKO. The role of Mg(II) in DNA cleavage site recognition in group II intron ribozymes: solution structure and metal ion binding sites of the RNA-DNA complex. J Biol Chem 2015; 289:20650-63. [PMID: 24895129 DOI: 10.1074/jbc.m113.542381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Group II intron ribozymes catalyze the cleavage of (and their reinsertion into) DNA and RNA targets using a Mg2(+)-dependent reaction. The target is cleaved 3' to the last nucleotide of intron binding site 1 (IBS1), one of three regions that form base pairs with the intron's exon binding sites (EBS1 to -3).We solved the NMR solution structure of the d3' hairpin of the Sc.ai5γ intron containing EBS1 in its 11-nucleotide loop in complex with the dIBS1 DNA 7-mer and compare it with the analogous RNA-RNA contact. The EBS1-dIBS1 helix is slightly flexible and non-symmetric. NMR data reveal two major groove binding sites for divalent metal ions at the EBS1-dIBS1 helix, and surface plasmon resonance experiments show that low concentrations of Mg2(+) considerably enhance the affinity of dIBS1 for EBS1. Our results indicate that identification of both RNA and DNA IBS1 targets, presentation of the scissile bond, and stabilization of the structure by metal ions are governed by the overall structure of EBS1-dIBS1 and the surrounding loop nucleotides but are irrespective of different EBS1-(d)IBS1 geometries and interstrand affinities.
Collapse
|
15
|
Ward WL, Plakos K, DeRose VJ. Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chem Rev 2014; 114:4318-42. [PMID: 24730975 PMCID: PMC4002065 DOI: 10.1021/cr400476k] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 12/17/2022]
Affiliation(s)
- W. Luke Ward
- Department of Chemistry and Biochemistry and Institute of
Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Kory Plakos
- Department of Chemistry and Biochemistry and Institute of
Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry and Biochemistry and Institute of
Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
16
|
Fica SM, Mefford MA, Piccirilli JA, Staley JP. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat Struct Mol Biol 2014; 21:464-471. [PMID: 24747940 PMCID: PMC4257784 DOI: 10.1038/nsmb.2815] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/27/2014] [Indexed: 01/04/2023]
Abstract
To catalyze pre-mRNA splicing, U6 small nuclear RNA positions two metals that interact directly with the scissile phosphates. U6 metal ligands correspond stereospecifically to metal ligands within the catalytic domain V of a group II self-splicing intron. Domain V ligands are organized by base-triple interactions, which also juxtapose the 3' splice site with the catalytic metals. However, in the spliceosome, the mechanism for organizing catalytic metals and recruiting the substrate has remained unclear. Here we show by genetics, cross-linking and biochemistry in yeast that analogous triples form in U6 and promote catalytic-metal binding and both chemical steps of splicing. Because the triples include an element that defines the 5' splice site, they also provide a mechanism for juxtaposing the pre-mRNA substrate with the catalytic metals. Our data indicate that U6 adopts a group II intron-like tertiary conformation to catalyze splicing.
Collapse
Affiliation(s)
- Sebastian M Fica
- Graduate Program in Cell and Molecular Biology, The University of Chicago, Chicago IL.,Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago IL
| | - Melissa A Mefford
- Committee on Genetics Genomics and Systems Biology, The University of Chicago, Chicago, IL
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago IL.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago IL
| |
Collapse
|
17
|
Kruschel D, Skilandat M, Sigel RK. NMR structure of the 5' splice site in the group IIB intron Sc.ai5γ--conformational requirements for exon-intron recognition. RNA (NEW YORK, N.Y.) 2014; 20:295-307. [PMID: 24448450 PMCID: PMC3923125 DOI: 10.1261/rna.041137.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A crucial step of the self-splicing reaction of group II intron ribozymes is the recognition of the 5' exon by the intron. This recognition is achieved by two regions in domain 1 of the intron, the exon-binding sites EBS1 and EBS2 forming base pairs with the intron-binding sites IBS1 and IBS2 located at the end of the 5' exon. The complementarity of the EBS1•IBS1 contact is most important for ensuring site-specific cleavage of the phosphodiester bond between the 5' exon and the intron. Here, we present the NMR solution structures of the d3' hairpin including EBS1 free in solution and bound to the IBS1 7-mer. In the unbound state, EBS1 is part of a flexible 11-nucleotide (nt) loop. Binding of IBS1 restructures and freezes the entire loop region. Mg(2+) ions are bound near the termini of the EBS1•IBS1 helix, stabilizing the interaction. Formation of the 7-bp EBS1•IBS1 helix within a loop of only 11 nt forces the loop backbone to form a sharp turn opposite of the splice site, thereby presenting the scissile phosphate in a position that is structurally unique.
Collapse
|
18
|
Bonneau E, Legault P. NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions. Biochemistry 2014; 53:579-90. [PMID: 24364590 PMCID: PMC3906864 DOI: 10.1021/bi401484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
19
|
Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids. Met Ions Life Sci 2013; 11:191-274. [PMID: 23430775 DOI: 10.1007/978-94-007-5179-8_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand contains an aromatic residue (e.g., 2,2'-bipyridine or the indole ring of tryptophanate) intramolecular stack formation takes place. With buffers like Tris or Bistris mixed ligand complexes are formed. Cd(2+) coordination to dinucleotides and to dinucleoside monophosphates provides some insights regarding the interaction between Cd(2+) and nucleic acids. Cd(2+) binding to oligonucleotides follows the principles of coordination to its units. The available crystal studies reveal that N7 of purines is the prominent binding site followed by phosphate oxygens and other heteroatoms in nucleic acids. Due to its high thiophilicity, Cd(2+) is regularly used in so-called thiorescue experiments, which lead to the identification of a direct involvement of divalent metal ions in ribozyme catalysis.
Collapse
|
20
|
Piperakis MM, Gaynor JW, Fisher J, Cosstick R. Thermal stabilisation of RNA·RNA duplexes and G-quadruplexes by phosphorothiolate linkages. Org Biomol Chem 2012; 11:966-74. [PMID: 23250349 DOI: 10.1039/c2ob26940f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of 3'-S-phosphorothiolate linkages on the stability of RNA·RNA duplexes and G-quadruplex structures has been studied. 3'-Thio-2'-deoxyuridine was incorporated into RNA duplexes and thermal melting studies revealed that the resulting 3'-S-phosphorothiolate linkages increased the stability of the duplex to thermal denaturation. Additionally, and contrary to expectation, a similar effect on duplex stability was observed when the same thionucleoside was incorporated into the RNA strand of a RNA·DNA duplex. A suitably protected derivative of 3'-thio-2'-deoxyguanosine was prepared using an oxidation-reduction strategy and this residue also increased the thermal stability the [d(TGGGGT)](4) G-quadruplex when positioned centrally. The results are discussed in terms of the influence that the sulfur atom has on the conformation of the furanose ring and imply that the previously noted high thermal stability of parallel RNA quadruplexes is not derived from H-bonding interactions of the 2'-hydroxyl group, but can be attributed to conformational effects.
Collapse
|
21
|
Frederiksen JK, Li NS, Das R, Herschlag D, Piccirilli JA. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding. RNA (NEW YORK, N.Y.) 2012; 18:1123-1141. [PMID: 22539523 PMCID: PMC3358636 DOI: 10.1261/rna.028738.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/17/2012] [Indexed: 05/27/2023]
Abstract
Within the three-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules to form chelates. These interactions help the RNA adopt and maintain specific conformations and frequently make essential contributions to function. Defining the locations of these site-bound metal ions remains challenging despite the growing database of RNA structures. Metal-ion rescue experiments have provided a powerful approach to identify and distinguish catalytic metal ions within RNA active sites, but the ability of such experiments to identify metal ions that contribute to tertiary structure acquisition and structural stability is less developed and has been challenged. Herein, we use the well-defined P4-P6 RNA domain of the Tetrahymena group I intron to reevaluate prior evidence against the discriminatory power of metal-ion rescue experiments and to advance thermodynamic descriptions necessary for interpreting these experiments. The approach successfully identifies ligands within the RNA that occupy the inner coordination sphere of divalent metal ions and distinguishes them from ligands that occupy the outer coordination sphere. Our results underscore the importance of obtaining complete folding isotherms and establishing and evaluating thermodynamic models in order to draw conclusions from metal-ion rescue experiments. These results establish metal-ion rescue as a rigorous tool for identifying and dissecting energetically important metal-ion interactions in RNAs that are noncatalytic but critical for RNA tertiary structure.
Collapse
Affiliation(s)
- John K. Frederiksen
- The Pritzker School of Medicine
- Department of Biochemistry and Molecular Biology
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rhiju Das
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305-5307, USA
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305-5307, USA
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
22
|
Abstract
Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
23
|
Li NS, Frederiksen JK, Piccirilli JA. Synthesis, properties, and applications of oligonucleotides containing an RNA dinucleotide phosphorothiolate linkage. Acc Chem Res 2011; 44:1257-69. [PMID: 21882874 DOI: 10.1021/ar200131t] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA represents a prominent class of biomolecules. Present in all living systems, RNA plays many essential roles in gene expression, regulation, and development. Accordingly, many biological processes depend on the accurate enzymatic processing, modification, and cleavage of RNA. Understanding the catalytic mechanisms of these enzymes therefore represents an important goal in defining living systems at the molecular level. In this context, RNA molecules bearing 3'- or 5'-S-phosphorothiolate linkages comprise what are arguably among the most incisive mechanistic probes available. They have been instrumental in showing that RNA splicing systems are metalloenzymes and in mapping the ligands that reside within RNA active sites. The resulting models have in turn verified the functional relevance of crystal structures. In other cases, phosphorothiolates have offered an experimental strategy to circumvent the classic problem of kinetic ambiguity; mechanistic enzymologists have used this tool to assign precise roles to catalytic groups as general acids or bases. These insights into macromolecular function are enabled by the synthesis of nucleic acids bearing phosphorothiolate linkages and the unique chemical properties they impart. In this Account, we review the synthesis, properties, and applications of oligonucleotides and oligodeoxynucleotides containing an RNA dinucleotide phosphorothiolate linkage. Phosphorothioate linkages are structurally very similar to phosphorothiolate linkages, as reflected in the single letter of difference in nomenclature. Phosphorothioate substitutions, in which sulfur replaces one or both nonbridging oxygens within a phosphodiester linkage, are now widely available and are used routinely in numerous biochemical and medicinal applications. Indeed, synthetic phosphorothioate linkages can be introduced readily via a sulfurization step programmed into automated solid-phase oligonucleotide synthesizers. In contrast, phosphorothiolate oligonucleotides, in which sulfur replaces a specific 3'- or 5'-bridging oxygen, have presented a more difficult synthetic challenge, requiring chemical alterations to the attached sugar moiety. Here we begin by outlining the synthetic strategies used to access these phosphorothiolate RNA analogues. The Arbuzov reaction and phosphoramidite chemistry are often brought to bear in creating either 3'- or 5'-S-phosphorothiolate dinucleotides. We then summarize the responses of the phosphorothiolate derivatives to chemical and enzymatic cleavage agents, as well as mechanistic insights their use has engendered. They demonstrate particular utility as probes of metal-ion-dependent phosphotransesterification, general acid-base-catalyzed phosphotransesterification, and rate-limiting chemistry. The 3'- and 5'-S-phosphorothiolates have proven invaluable in elucidating the mechanisms of enzymatic and nonenzymatic phosphoryl transfer reactions. Considering that RNA cleavage represents a fundamental step in the maturation, degradation, and regulation of this important macromolecule, the significant synthetic challenges that remain offer rich research opportunities.
Collapse
Affiliation(s)
- Nan-Sheng Li
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - John K. Frederiksen
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Chval Z, Chvalová D, Leclerc F. Modeling the RNA 2'OH activation: possible roles of metal ion and nucleobase as catalysts in self-cleaving ribozymes. J Phys Chem B 2011; 115:10943-56. [PMID: 21823619 DOI: 10.1021/jp200970d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA 2'OH activation as taking place in the first chemical step of self-cleaving ribozymes is studied theoretically by DFT and MP2 methods using a continuum solvation model (CPCM). The reaction of proton transfer is studied in the presence of two kinds of catalysts: a fully hydrated metal ion (Mg(2+)) or partially hydrated nucleobase (guanine), taken separately or together leading to three different modes of activation. The metal ion is either directly bound (inner-sphere) or indirectly bound (outer-sphere) to the 2'OH group and a hydroxide ion acts as a general or specific base; the nucleobase is taken in anionic or in neutral enol-tautomeric forms playing itself the role of general base. The presence of a close metal ion (outer-sphere) lowers the pK(a) value of the 2'OH group by several log units in both metal-ion and nuleobase catalysis. The direct metal coordination to the 2'OH group (inner-sphere) further stabilizes the developing negative charge on the nucleophile. The switching from the inner-sphere to the outer-sphere coordination appears to be driven by the energy cost for reorganizing the first coordination shell rather than by the electrostatic repulsion between the ligands. The metal-ion catalysis is more effective with a specific base in the dianionic mechanism. On the other hand, the nucleobase catalysis is more effective in the monoanionic mechanism and in the presence of a metal ion acting as a cofactor through nonspecific electrostatic interactions. The results establish a baseline to study the possible roles of metal and nucleobase catalysts and their environment in more realistic models for self-cleaving ribozymes.
Collapse
Affiliation(s)
- Zdeněk Chval
- Department of Laboratory Methods and Information Systems, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 27, 370 11 České Budějovice, Czech Republic.
| | | | | |
Collapse
|
25
|
Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3:a003616. [PMID: 20463000 DOI: 10.1101/cshperspect.a003616] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors ("targetrons"), which have the unique feature of readily programmable DNA target specificity.
Collapse
Affiliation(s)
- Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
26
|
Lönnberg T. Understanding Catalysis of Phosphate‐Transfer Reactions by the Large Ribozymes. Chemistry 2011; 17:7140-53. [DOI: 10.1002/chem.201100009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20140 Turku (Finland), Fax: (+358) 2‐333‐6700
| |
Collapse
|
27
|
Jaladat Y, Zhang B, Mohammadi A, Valadkhan S. Splicing of an intervening sequence by protein-free human snRNAs. RNA Biol 2011; 8:372-7. [PMID: 21445000 DOI: 10.4161/rna.8.3.15386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Significant structural and mechanistic similarities between the spliceosomal snRNAs and catalytically critical domains of self-splicing group II introns have led to the hypothesis that the spliceosomes and group II introns may be evolutionarily related. We have previously shown that in vitro-transcribed, protein-free U6 and U2 snRNAs can catalyze a two-step splicing reaction in trans on two short RNA oligonucleotides that is identical to the splicing reactions performed by many self-splicing group II introns. Here we show that the same two snRNAs can perform splicing in cis by removal of an intervening sequence from a model substrate. These results prove that the protein-free snRNAs are competent to perform splicing on pre-mRNAs and further strengthen the possibility of an evolutionary relationship to group II introns.
Collapse
Affiliation(s)
- Yasaman Jaladat
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The spliceosome is a massive complex of 5 RNAs and many proteins that associate to catalyze precursor messenger RNA splicing. The process of splicing involves two phosphoryl transfer reactions that result in intron excision and ligation of the flanking exons. Since it is required for normal protein production in eukaryotic cells, pre-mRNA splicing is an essential step in gene expression. Although high resolution structural views of the spliceosome do not yet exist, a growing body of evidence indicates that the spliceosome is a magnesium-dependent enzyme that utilizes catalytic metal ions to stabilize both transition states during the two phosphoryl transfer steps of splicing. A wealth of data also indicate that the core of the spliceosome is comprised of RNA, and suggest that the spliceosome may be a ribozyme. This chapter presents the evidence for metal ion catalysis by the spliceosome, draws comparisons to similar RNA enzymes, and discusses the future directions for research into the mechanism of pre-mRNA splicing.
Collapse
Affiliation(s)
- Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| |
Collapse
|
29
|
Johnson-Buck AE, McDowell SE, Walter NG. Metal ions: supporting actors in the playbook of small ribozymes. Met Ions Life Sci 2011; 9:175-96. [PMID: 22010272 DOI: 10.1039/9781849732512-00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, as well as in gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes - the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes--catalyze the same self-cleavage reaction as RNase A, resulting in two products, one bearing a 2'-3' cyclic phosphate and the other a 5'-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general.
Collapse
Affiliation(s)
- Alexander E Johnson-Buck
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
30
|
Pyle AM. The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 2010; 45:215-32. [PMID: 20446804 DOI: 10.3109/10409231003796523] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute and Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Wang J. Inclusion of weak high-resolution X-ray data for improvement of a group II intron structure. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:988-1000. [PMID: 20823550 DOI: 10.1107/s0907444910029938] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022]
Abstract
It is common to report the resolution of a macromolecular structure with the highest resolution shell having an averaged I/σ(I) ≥ 2. Data beyond the resolution thus defined are weak and often poorly measured. The exclusion of these weak data may improve the apparent statistics and also leads to claims of lower resolutions that give some leniency in the acceptable quality of refined models. However, the inclusion of these data can provide additional strong constraints on atomic models during structure refinement and thus help to correct errors in the original models, as has recently been demonstrated for a protein structure. Here, an improved group II intron structure is reported arising from the inclusion of these data, which helped to define more accurate solvent models for density modification during experimental phasing steps. With the improved resolution and accuracy of the experimental phases, extensive revisions were made to the original models such that the correct tertiary interactions of the group II intron that are essential for understanding the chemistry of this ribozyme could be described.
Collapse
|
32
|
Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage. Biochemistry 2010; 49:6508-18. [DOI: 10.1021/bi100670p] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Rieko Yajima
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Durga M. Chadalavada
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| |
Collapse
|
33
|
The 2'-OH group at the group II intron terminus acts as a proton shuttle. Nat Chem Biol 2010; 6:218-224. [PMID: 20118939 PMCID: PMC2825881 DOI: 10.1038/nchembio.312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/17/2009] [Indexed: 11/16/2022]
Abstract
Group II introns are self-splicing ribozymes that excise themselves from precursor RNAs and catalyze the joining of flanking exons. Excised introns can behave as parasitic RNA molecules, catalyzing their own insertion into DNA and RNA via a reverse-splicing reaction. Previous studies have identified mechanistic roles for various functional groups located in the catalytic core of the intron and within target molecules. Here we introduce a new method for synthesizing long RNA molecules with a modified nucleotide at the 3′-terminus. This modification allows us to examine the mechanistic role of functional groups adjacent to the reaction nucleophile. During reverse-splicing, the 3′-OH group of the intron terminus attacks the phosphodiester linkage of spliced exon sequences. Here we show that the adjacent 2′-OH group on the intron terminus plays an essential role in activating the nucleophile by stripping away a proton from the 3′-OH and then shuttling it from the active-site.
Collapse
|
34
|
Gaynor JW, Piperakis MM, Fisher J, Cosstick R. Reverse-direction (5'-->3') synthesis of oligonucleotides containing a 3'-S-phosphorothiolate linkage and 3'-terminal 3'-thionucleosides. Org Biomol Chem 2010; 8:1463-70. [PMID: 20204222 DOI: 10.1039/b923545k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of oligodeoxynucleotides containing 3'-thionucleosides has been explored using a reverse-direction (5'-->3') approach, based on nucleoside monomers which contain a trityl- or dimethoxytrityl-protected 3'-thiol and a 5'-O-phosphoramidite. These monomers are relatively simple to prepare as trityl-based protecting groups were introduced selectively at a 3'-thiol in preference to a 5'-hydroxyl group. As an alternative approach, trityl group migration could be induced from the 5'-oxygen to the 3'-thiol function. 5'-->3' Synthesis of oligonucleotides gave relatively poor yields for the internal incorporation of 3'-thionucleosides [to give a 3'-S-phosphorothiolate (3'-SP) linkage] and multiple 3'-SP modifications could not be introduced by this method. However, the reverse direction approach provided an efficient route to oligonucleotides terminating with a 3'-thionucleoside. The direct synthesis of these thio-terminating oligomers has not previously been reported and the methods described are applicable to 2'-deoxy-3'-thionucleosides derived from thymine, cytosine and adenine.
Collapse
Affiliation(s)
- James W Gaynor
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK L69 7ZD
| | | | | | | |
Collapse
|
35
|
Toor N, Keating KS, Fedorova O, Rajashankar K, Wang J, Pyle AM. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA (NEW YORK, N.Y.) 2010; 16:57-69. [PMID: 19952115 PMCID: PMC2802037 DOI: 10.1261/rna.1844010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Group II introns are large ribozymes that act as self-splicing and retrotransposable RNA molecules. They are of great interest because of their potential evolutionary relationship to the eukaryotic spliceosome, their continued influence on the organization of many genomes in bacteria and eukaryotes, and their potential utility as tools for gene therapy and biotechnology. One of the most interesting features of group II introns is their relative lack of nucleobase conservation and covariation, which has long suggested that group II intron structures are stabilized by numerous unusual tertiary interactions and backbone-mediated contacts. Here, we provide a detailed description of the tertiary interaction networks within the Oceanobacillus iheyensis group IIC intron, for which a crystal structure was recently solved to 3.1 A resolution. The structure can be described as a set of several intricately constructed tertiary interaction nodes, each of which contains a core of extended stacking networks and elaborate motifs. Many of these nodes are surrounded by a web of ribose zippers, which appear to further stabilize local structure. As predicted from biochemical and genetic studies, the group II intron provides a wealth of new information on strategies for RNA folding and tertiary structural organization.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The 2'-hydroxyl group plays an integral role in RNA structure and catalysis. This ubiquitous component of the RNA backbone can participate in multiple interactions essential for RNA function, such as hydrogen bonding and metal ion coordination, but the multifunctional nature of the 2'-hydroxyl renders identification of these interactions a significant challenge. By virtue of their versatile physicochemical properties, such as distinct metal coordination preferences, hydrogen bonding properties, and ability to be protonated, 2'-amino-2'-deoxyribonucleotides can serve as tools for probing local interactions involving 2'-hydroxyl groups within RNA. The 2'-amino group can also serve as a chemoselective site for covalent modification, permitting the introduction of probes for investigation of RNA structure and dynamics. In this chapter, we describe the use of 2'-aminonucleotides for investigation of local interactions within RNA, focusing on interactions involving 2'-hydroxyl groups required for RNA structure, function, and catalysis.
Collapse
|
37
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
38
|
Toor N, Keating KS, Pyle AM. Structural insights into RNA splicing. Curr Opin Struct Biol 2009; 19:260-6. [PMID: 19443210 DOI: 10.1016/j.sbi.2009.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/07/2009] [Indexed: 11/16/2022]
Abstract
Intron splicing is a fundamental biological process whereby noncoding sequences are removed from precursor RNAs. Recent work has provided new insights into the structural features and reaction mechanisms of two introns that catalyze their own splicing from precursor RNA: the group I and II introns. In addition, there is an increasing amount of structural information on the spliceosome, which is a ribonucleoprotein machine that catalyzes nuclear pre-mRNA splicing in eukaryotes. Here, we compare structures and catalytic mechanisms of self-splicing RNAs and we discuss the possible implications for spliceosomal reaction mechanisms.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
39
|
The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 2009; 34:189-99. [DOI: 10.1016/j.tibs.2008.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 11/23/2022]
|
40
|
Roitzsch M, Pyle AM. The linear form of a group II intron catalyzes efficient autocatalytic reverse splicing, establishing a potential for mobility. RNA (NEW YORK, N.Y.) 2009; 15:473-482. [PMID: 19168748 PMCID: PMC2657011 DOI: 10.1261/rna.1392009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/17/2008] [Indexed: 05/27/2023]
Abstract
Self-splicing group II introns catalyze their own excision from pre-RNAs, thereby joining the flanking exons. The introns can be released in a lariat or linear form. Lariat introns have been shown to reverse the splicing reaction; in contrast, linear introns are generally believed to perform no or only poor reverse splicing. Here, we show that a linear group II intron derived from ai5gamma can reverse the second step of splicing with unexpectedly high efficiency and precision. Moreover, the linear intron generates dramatically more reverse-splicing product than its lariat equivalent. The finding that linear group II introns can readily undergo the critical first step of mobility by catalyzing efficient reverse splicing into complementary target molecules demonstrates their innate potential for mobility and transposition and raises the possibility that reverse splicing by linear group II introns may have played a significant role in certain forms of intron mobility and lateral gene transfer during evolution.
Collapse
Affiliation(s)
- Michael Roitzsch
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
41
|
Furler M, Knobloch B, Sigel RK. Influence of decreased solvent permittivity on the structure and magnesium(II)-binding properties of the catalytic domain 5 of a group II intron ribozyme. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.03.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Toor N, Rajashankar K, Keating KS, Pyle AM. Structural basis for exon recognition by a group II intron. Nat Struct Mol Biol 2008; 15:1221-2. [PMID: 18953333 DOI: 10.1038/nsmb.1509] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 10/01/2008] [Indexed: 11/09/2022]
Abstract
Free group II introns are infectious retroelements that can bind and insert themselves into RNA and DNA molecules via reverse splicing. Here we report the 3.4-A crystal structure of a complex between an oligonucleotide target substrate and a group IIC intron, as well as the refined free intron structure. The structure of the complex reveals the conformation of motifs involved in exon recognition by group II introns.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
43
|
Gerdt JP, Miduturu CV, Silverman SK. Selective stabilization of natively folded RNA structure by DNA constraints. J Am Chem Soc 2008; 130:14920-1. [PMID: 18855395 DOI: 10.1021/ja8057277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Learning how native RNA conformations can be stabilized relative to unfolded states is an important objective, for both understanding natural RNAs and improving the design of artificial functional RNAs. Here we show that covalently attached double-stranded DNA constraints (ca. 14 base pairs in length) can significantly stabilize the native conformation of an RNA molecule. Using the P4-P6 domain of the Tetrahymena group I intron as the test system, we identified pairs of RNA sites where attaching a DNA duplex is predicted to be structurally compatible with only the folded state of the RNA. The DNA-constrained RNAs were synthesized and shown by nondenaturing polyacrylamide gel electrophoresis (native PAGE) to have substantial decreases in their Mg2+ midpoints ([Mg2+]1/2 values). These changes are equivalent to free energy stabilizations as large as DeltaDeltaGdegrees = -2.5 kcal/mol, which is approximately 14% of the total tertiary folding energy. For comparison, the sole modification of P4-P6 previously reported to stabilize this RNA is a single-nucleotide deletion (DeltaC209) that provides only 1.1 kcal/mol of stabilization. Our findings indicate that nature has not completely optimized P4-P6 RNA folding. Furthermore, the DNA constraints are designed not to interact directly and extensively with the RNA, but rather more indirectly to modulate the relative stabilities of folded and unfolded RNA states. The successful implementation of this strategy to further stabilize a natively folded RNA conformation suggests an important element of modularity in stabilization of RNA structure, with implications for how nature might use other molecules such as proteins to stabilize specific RNA conformations.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
44
|
Smith MD, Mehdizadeh R, Olive JE, Collins RA. The ionic environment determines ribozyme cleavage rate by modulation of nucleobase pK a. RNA (NEW YORK, N.Y.) 2008; 14:1942-9. [PMID: 18697921 PMCID: PMC2525962 DOI: 10.1261/rna.1102308] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 06/02/2008] [Indexed: 05/20/2023]
Abstract
Several small ribozymes employ general acid-base catalysis as a mechanism to enhance site-specific RNA cleavage, even though the functional groups on the ribonucleoside building blocks of RNA have pK (a) values far removed from physiological pH. The rate of the cleavage reaction is strongly affected by the identity of the metal cation present in the reaction solution; however, the mechanism(s) by which different cations contribute to rate enhancement has not been determined. Using the Neurospora VS ribozyme, we provide evidence that different cations confer particular shifts in the apparent pK (a) values of the catalytic nucleobases, which in turn determines the fraction of RNA in the protonation state competent for general acid-base catalysis at a given pH, which determines the observed rate of the cleavage reaction. Despite large differences in observed rates of cleavage in different cations, mathematical models of general acid-base catalysis indicate that k (1), the intrinsic rate of the bond-breaking step, is essentially constant irrespective of the identity of the cation(s) in the reaction solution. Thus, in contrast to models that invoke unique roles for metal ions in ribozyme chemical mechanisms, we find that most, and possibly all, of the ion-specific rate enhancement in the VS ribozyme can be explained solely by the effect of the ions on nucleobase pK (a). The inference that k (1) is essentially constant suggests a resolution of the problem of kinetic ambiguity in favor of a model in which the lower pK (a) is that of the general acid and the higher pK (a) is that of the general base.
Collapse
Affiliation(s)
- M Duane Smith
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
45
|
Dayie KT, Padgett RA. A glimpse into the active site of a group II intron and maybe the spliceosome, too. RNA (NEW YORK, N.Y.) 2008; 14:1697-703. [PMID: 18658120 PMCID: PMC2525965 DOI: 10.1261/rna.1154408] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The X-ray crystal structure of an excised group II self-splicing intron was recently solved by the Pyle group. Here we review some of the notable features of this structure and what they may tell us about the catalytic active site of the group II ribozyme and potentially the spliceosome. The new structure validates the central role of domain V in both the structure and catalytic function of the ribozyme and resolves several outstanding puzzles raised by previous biochemical, genetic and structural studies. While lacking both exons as well as the cleavage sites and nucleophiles, the structure reveals how a network of tertiary interactions can position two divalent metal ions in a configuration that is ideal for catalysis.
Collapse
Affiliation(s)
- Kwaku T Dayie
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
46
|
Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 2008; 13:1025-36. [DOI: 10.1007/s00775-008-0390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022]
|
47
|
Abstract
Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Bass Building, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology and Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
49
|
Lu J, Li NS, Sengupta RN, Piccirilli JA. Synthesis and biochemical application of 2'-O-methyl-3'-thioguanosine as a probe to explore group I intron catalysis. Bioorg Med Chem 2008; 16:5754-60. [PMID: 18397828 PMCID: PMC2664738 DOI: 10.1016/j.bmc.2008.03.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
Abstract
Oligonucleotides containing 3'-S-phosphorothiolate linkages provide valuable analogues for exploring the catalytic mechanisms of enzymes and ribozymes, both to identify catalytic metal ions and to probe hydrogen-bonding interactions. Here, we have synthesized 2'-O-methyl-3'-thioguanosine to test a possible hydrogen-bonding interaction in the Tetrahymena ribozyme reaction. We developed an efficient method for the synthesis of 2'-O-methyl-3'-thioguanosine phosphoramidite in eight steps starting from 2'-O-methyl-N(2)-(isobutyryl) guanosine with 10.4% overall yield. Following incorporation into oligonucleotides using solid-phase synthesis, we used this new analogue to investigate whether the 3'-oxygen of the guanosine cofactor in the Tetrahymena ribozyme reaction serves as an acceptor for the hydrogen bond donated by the adjacent 2'-hydroxyl group. We show that regardless of whether the guanosine cofactor bears a 3'-oxygen or 3'-sulfur leaving group, replacing the adjacent 2'-hydroxyl group with a 2'-methoxy group incurs the same energetic penalty, providing evidence against an interaction. These results indicate that the hydrogen bond donated by the guanosine 2'-hydroxyl group contributes to catalytic function in a manner distinct from the U(-1) 2'-hydroxyl group.
Collapse
Affiliation(s)
- Jun Lu
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
50
|
Strobel SA, Cochrane JC. RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr Opin Chem Biol 2007; 11:636-43. [PMID: 17981494 DOI: 10.1016/j.cbpa.2007.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
The catalytic mechanisms employed by RNA are chemically more diverse than initially suspected. Divalent metal ions, nucleobases, ribosyl hydroxyl groups, and even functional groups on metabolic cofactors all contribute to the various strategies employed by RNA enzymes. This catalytic breadth raises intriguing evolutionary questions about how RNA lost its biological role in some cases, but not in others, and what catalytic roles RNA might still be playing in biology.
Collapse
Affiliation(s)
- Scott A Strobel
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|