1
|
Vysloužilová D, Kováč O. The Chemistry of Angucyclines. Chempluschem 2024; 89:e202400307. [PMID: 38958029 DOI: 10.1002/cplu.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Angucyclines and angucyclinones represent a class of natural compounds that belong to the group of aromatic polyketides. They exhibit a wide array of biological properties, such as antimicrobial, antiviral, and cytotoxic. Their considerable therapeutic potential and diverse scaffolds have attracted many synthetic chemists to devise novel strategies to construct their intricate molecular architecture. Over 300 class members have been isolated from natural sources, mainly from bacterial strains of Streptomyces species. This review highlights recent advancements in their synthesis, such as oxidative cyclization, photooxidation, and metal-catalyzed [4+2]-cycloaddition, which has facilitated the efficient and practical total syntheses of various angucycline and angucyclinone natural products.
Collapse
Affiliation(s)
- Denisa Vysloužilová
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Ondřej Kováč
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| |
Collapse
|
2
|
Xu X, Chang Y, Chen Y, Zhou L, Zhang F, Ma C, Che Q, Zhu T, Pfeifer BA, Zhang G, Li D. Biosynthesis of Atypical Angucyclines Unveils New Ring Rearrangement Reactions Catalyzed by Flavoprotein Monooxygenases. Org Lett 2024; 26:7489-7494. [PMID: 39194005 DOI: 10.1021/acs.orglett.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Six new angucycline structures, including spirocyclione A (1), which contains an unusual oxaspiro[5.5]undecane architecture, and its ring-A-cleaved product spirocyclione B (2), were discovered by heterologous expression of a type II polyketide biosynthetic gene cluster captured from a marine actinomycete strain Streptomyces sp. HDN155000. Three flavoprotein monooxygenases are confirmed to be responsible for the oxidative carbon skeleton rearrangements in the biosynthesis of compounds 1 and 2. The obtained compounds showed promising cytotoxicity against different types of cancer cells.
Collapse
Affiliation(s)
- Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266101, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266101, People's Republic of China
| |
Collapse
|
3
|
Nuutila A, Xiao X, van der Heul HU, van Wezel GP, Dinis P, Elsayed SS, Metsä-Ketelä M. Divergence of Classical and C-Ring-Cleaved Angucyclines: Elucidation of Early Tailoring Steps in Lugdunomycin and Thioangucycline Biosynthesis. ACS Chem Biol 2024; 19:1131-1141. [PMID: 38668630 PMCID: PMC11106748 DOI: 10.1021/acschembio.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.
Collapse
Affiliation(s)
- Aleksi Nuutila
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| | - Xiansha Xiao
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Helga U. van der Heul
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Pedro Dinis
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| |
Collapse
|
4
|
Elsayed SS, van der Heul HU, Xiao X, Nuutila A, Baars LR, Wu C, Metsä-Ketelä M, van Wezel GP. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun Chem 2023; 6:281. [PMID: 38110491 PMCID: PMC10728087 DOI: 10.1038/s42004-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Helga U van der Heul
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Laura R Baars
- Department of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237, Qingdao, P.R. China
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Shen Q, Dai G, Li A, Liu Y, Zhong G, Li X, Ren X, Sui H, Fu J, Jiao N, Zhang Y, Bian X, Zhou H. Genome-Guided Discovery of Highly Oxygenated Aromatic Polyketides, Saccharothrixins D-M, from the Rare Marine Actinomycete Saccharothrix sp. D09. JOURNAL OF NATURAL PRODUCTS 2021; 84:2875-2884. [PMID: 34784196 DOI: 10.1021/acs.jnatprod.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angucyclines and angucyclinones are aromatic polyketides with intriguing structures and therapeutic value. Genome mining of the rare marine actinomycete Saccharothrix sp. D09 led to the identification of a type II polyketide synthase biosynthetic gene cluster, sxn, which encodes several distinct subclasses of oxidoreductases, implying that this strain has the potential to produce novel polycyclic aromatic polyketides with unusual redox modifications. The "one strain-many compounds" (OSMAC) strategy and comparative metabolite analysis facilitated the discovery of 20 angucycline derivatives from the D09 strain, including six new highly oxygenated saccharothrixins D-I (1-6), four new glycosylated saccharothrixins J-M (7-10), and 10 known analogues (11-20). Their structures were elucidated based on detailed HRESIMS, NMR spectroscopic, and X-ray crystallographic analysis. With the help of gene disruption and heterologous expression, we proposed their plausible biosynthetic pathways. In addition, compounds 3, 4, and 8 showed antibacterial activity against Helicobacter pylori with MIC values ranging from 16 to 32 μg/mL. Compound 3 also revealed anti-inflammatory activity by inhibiting the production of NO with an IC50 value of 28 μM.
Collapse
Affiliation(s)
- Qiyao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoju Li
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangmei Ren
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Sui
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Fu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Zin NM, Ismail A, Mark DR, Westrop G, Schniete JK, Herron PR. Adaptation to Endophytic Lifestyle Through Genome Reduction by Kitasatospora sp. SUK42. Front Bioeng Biotechnol 2021; 9:740722. [PMID: 34712653 PMCID: PMC8545861 DOI: 10.3389/fbioe.2021.740722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.
Collapse
Affiliation(s)
- Noraziah M Zin
- School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aishah Ismail
- School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gareth Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jana K Schniete
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul R Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
7
|
Zhang J, Sun Y, Wang Y, Chen X, Xue L, Zhang J, Zhu X, Duan Y, Yan X. Genome mining of novel rubiginones from Streptomyces sp. CB02414 and characterization of the post-PKS modification steps in rubiginone biosynthesis. Microb Cell Fact 2021; 20:192. [PMID: 34600534 PMCID: PMC8487521 DOI: 10.1186/s12934-021-01681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Rubiginones belong to the angucycline family of aromatic polyketides, and they have been shown to potentiate the vincristine (VCR)-induced cytotoxicity against VCR-resistant cancer cell lines. However, the biosynthetic gene clusters (BGCs) and biosynthetic pathways for rubiginones have not been reported yet. Results In this study, based on bioinformatics analysis of the genome of Streptomyces sp. CB02414, we predicted the functions of the two type II polyketide synthases (PKSs) BGCs. The rub gene cluster was predicted to encode metabolites of the angucycline family. Scale-up fermentation of the CB02414 wild-type strain led to the discovery of eight rubiginones, including five new ones (rubiginones J, K, L, M, and N). Rubiginone J was proposed to be the final product of the rub gene cluster, which features extensive oxidation on the A-ring of the angucycline skeleton. Based on the production profiles of the CB02414 wild-type and the mutant strains, we proposed a biosynthetic pathway for the rubiginones in CB02414. Conclusions A genome mining strategy enabled the efficient discovery of new rubiginones from Streptomyces sp. CB02414. Based on the isolated biosynthetic intermediates, a plausible biosynthetic pathway for the rubiginones was proposed. Our research lays the foundation for further studies on the mechanism of the cytochrome P450-catalyzed oxidation of angucyclines and for the generation of novel angucyclines using combinatorial biosynthesis strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01681-5.
Collapse
Affiliation(s)
- Jingyan Zhang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Ying Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Lu Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China.
| | - Xiaohui Yan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
8
|
Xiao X, Elsayed SS, Wu C, van der Heul HU, Metsä-Ketelä M, Du C, Prota AE, Chen CC, Liu W, Guo RT, Abrahams JP, van Wezel GP. Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway. ACS Chem Biol 2020; 15:2529-2538. [PMID: 32840360 PMCID: PMC7506943 DOI: 10.1021/acschembio.0c00564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Angucyclines are
a structurally diverse class of actinobacterial
natural products defined by their varied polycyclic ring systems,
which display a wide range of biological activities. We recently discovered
lugdunomycin (1), a highly rearranged polyketide antibiotic
derived from the angucycline backbone that is synthesized via several
yet unexplained enzymatic reactions. Here, we show via in
vivo, in vitro, and structural analysis
that the promiscuous reductase LugOII catalyzes both a C6 and an unprecedented
C1 ketoreduction. This then sets the stage for the subsequent C-ring
cleavage that is key to the rearranged scaffolds of 1. The 1.1 Å structures of LugOII in complex with either ligand
8-O-Methylrabelomycin (4) or 8-O-Methyltetrangomycin (5) and of apoenzyme
were resolved, which revealed a canonical Rossman fold and a remarkable
conformational change during substrate capture and release. Mutational
analysis uncovered key residues for substrate access, position, and
catalysis as well as specific determinants that control its dual functionality.
The insights obtained in this work hold promise for the discovery
and engineering of other promiscuous reductases that may be harnessed
for the generation of novel biocatalysts for chemoenzymatic applications.
Collapse
Affiliation(s)
- Xiansha Xiao
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Somayah S. Elsayed
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Helga U. van der Heul
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Mikko Metsä-Ketelä
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Chao Du
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Andrea E. Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Jan Pieter Abrahams
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
- Bio-nano diffraction Biozentrum, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gilles P. van Wezel
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
9
|
Ye Y, Anwar N, Mao X, Wu S, Yan C, Zhao Z, Zhang R, Nie Y, Zhang J, Wang J, Wu M. Discovery of Three 22-Membered Macrolides by Deciphering the Streamlined Genome of Mangrove-Derived Streptomyces sp. HM190. Front Microbiol 2020; 11:1464. [PMID: 32676068 PMCID: PMC7333363 DOI: 10.3389/fmicb.2020.01464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Strain HM190, a moderate halophile, was isolated from rhizosphere soil of the mangrove Kandelia obovata in Fugong village, China. The 16S ribosomal RNA (rRNA) gene sequence and the results of phylogenetic analysis revealed that strain HM190 belonged to the genus Streptomyces and had the highest sequence similarity of 99.79% to Streptomyces heilongjiangensis NEAU-W2T. The complete genome of strain HM190 comprised 7,762,826 bp in a linear chromosome with 71.97% G + C content. According to antiSMASH analysis, a total of 30 biosynthetic gene clusters (BGCs) were predicted to be involved in secondary metabolism, 12 of which were responsible for the production of polyketide- and non-ribosomal peptide-derived secondary metabolites. Gene cluster 5 was responsible for macrolide biosynthesis in a strain-specific 126,331-bp genomic island belonging to the left-arm region. Combined genomics–metabolomics analysis led to the discovery of three 22-membered macrolides (compounds 1–3). Their structures were elucidated by using spectroscopic techniques including high-resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR). The absolute configurations of compounds 1–3 were determined by the X-ray single crystal diffraction and NMR data analysis. All three compounds displayed moderate cytotoxic activities toward tumor cell lines HepG2, A549, and HCT116.
Collapse
Affiliation(s)
- Yanghui Ye
- Ocean College, Zhejiang University, Hangzhou, China
| | - Nusratgul Anwar
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuming Mao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cen Yan
- Ocean College, Zhejiang University, Hangzhou, China
| | - Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ran Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanfang Nie
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianwei Zhang
- Cardiovascular Health Department, AstraZeneca Trading Co., Ltd., Wuxi, China
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Min Wu
- Ocean College, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Saito S, Kato W, Ikeda H, Katsuyama Y, Ohnishi Y, Imoto M. Discovery of "heat shock metabolites" produced by thermotolerant actinomycetes in high-temperature culture. J Antibiot (Tokyo) 2020; 73:203-210. [PMID: 32015464 DOI: 10.1038/s41429-020-0279-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
In actinomycetes, many secondary metabolite biosynthetic genes are not expressed under typical laboratory culture conditions and various efforts have been made to activate these dormant genes. In this study, we focused on high-temperature culture. First, we examined the thermotolerance of 3160 actinomycete strains from our laboratory culture collection and selected 57 thermotolerant actinomycetes that grew well at 45 °C. These 57 thermotolerant actinomycetes were cultured for 5 days in liquid medium at both 30 °C and 45 °C. Culture broths were extracted with 1-butanol, and each extract was subjected to LC/MS analysis. The metabolic profiles of each strain were compared between the 30 °C and 45 °C cultures. We found that almost half of these thermotolerant actinomycetes produced secondary metabolites that were detected only in the 45 °C culture. This result suggests that high-temperature culture induces the production of dormant secondary metabolites. These compounds were named "heat shock metabolites (HSMs)." To examine HSM production in more detail, 18 strains were selected at random from the initial 57 strains and cultivated in six different media at 30 °C and 45 °C; as before, metabolic profiles of each strain in each medium were compared between the 30 °C and 45 °C cultures. From this analysis, we found a total of 131 HSMs. We identified several angucycline-related compounds as HSMs from two thermotolerant Streptomyces species. Furthermore, we discovered a new compound, murecholamide, as an HSM from thermotolerant Streptomyces sp. AY2. We propose that high-temperature culture of actinomycetes is a convenient method for activating dormant secondary metabolite biosynthetic genes.
Collapse
Affiliation(s)
- Shun Saito
- Faculty of Science and Technology, Department of Biosciences and Informatics, Keio University, Yokohama, 223-8522, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Wataru Kato
- Faculty of Science and Technology, Department of Biosciences and Informatics, Keio University, Yokohama, 223-8522, Japan
| | - Hiroaki Ikeda
- Faculty of Science and Technology, Department of Biosciences and Informatics, Keio University, Yokohama, 223-8522, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Masaya Imoto
- Faculty of Science and Technology, Department of Biosciences and Informatics, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
11
|
Mo J, Ye J, Chen H, Hou B, Wu H, Zhang H. Cloning and identification of the Frigocyclinone biosynthetic gene cluster from Streptomyces griseus strain NTK 97. Biosci Biotechnol Biochem 2019; 83:2082-2089. [PMID: 31303144 DOI: 10.1080/09168451.2019.1638755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Frigocyclinone is a novel antibiotic with antibacterial and anticancer activities. It is produced by both Antarctica-derived Streptomyces griseus NTK 97 and marine sponge-associated Streptomyces sp. M7_15. Here, we first report the biosynthetic gene cluster of frigocyclinone in the S. griseus NTK 97. The frigocyclinone gene cluster spans a DNA region of 33-kb which consists of 30 open reading frames (ORFs), encoding minimal type II polyketide synthase, aromatase and cyclase, redox tailoring enzymes, sugar biosynthesis-related enzymes, C-glycosyltransferase, a resistance protein, and three regulatory proteins. Based on the bioinformatic analysis, a biosynthetic pathway for frigocyclinone was proposed. Second, to verify the cloned gene cluster, CRISPR-Cpf1 mediated gene disruption was conducted. Mutant with the disruption of beta-ketoacyl synthase encoding gene frig20 fully loses the ability of producing frigocyclinone, while inactivating the glycosyltransferase gene frig1 leads to the production of key intermediate of anti-MRSA anthraquinone tetrangomycin.
Collapse
Affiliation(s)
- Jian Mo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haozhe Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China.,Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| |
Collapse
|
12
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
13
|
Zheng Q, Gong Y, Guo Y, Zhao Z, Wu Z, Zhou Z, Chen D, Pan L, Liu W. Structural Insights into a Flavin-Dependent [4 + 2] Cyclase that Catalyzes trans-Decalin Formation in Pyrroindomycin Biosynthesis. Cell Chem Biol 2018; 25:718-727.e3. [DOI: 10.1016/j.chembiol.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
14
|
Jackson DR, Yu X, Wang G, Patel AB, Calveras J, Barajas JF, Sasaki E, Metsä-Ketelä M, Liu HW, Rohr J, Tsai SC. Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chem Biol 2016; 11:1137-47. [PMID: 26813028 DOI: 10.1021/acschembio.5b00913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cores of aromatic polyketides are essential for their biological activities. Most type II polyketide synthases (PKSs) biosynthesize these core structures involving the minimal PKS, a PKS-associated ketoreductase (KR) and aromatases/cyclases (ARO/CYCs). Oxygenases (OXYs) are rarely involved. BE-7585A is an anticancer polyketide with an angucyclic core. (13)C isotope labeling experiments suggest that its angucyclic core may arise from an oxidative rearrangement of a linear anthracyclinone. Here, we present the crystal structure and functional analysis of BexE, the oxygenase proposed to catalyze this key oxidative rearrangement step that generates the angucyclinone framework. Biochemical assays using various linear anthracyclinone model compounds combined with docking simulations narrowed down the substrate of BexE to be an immediate precursor of aklaviketone, possibly 12-deoxy-aklaviketone. The structural analysis, docking simulations, and biochemical assays provide insights into the role of BexE in BE-7585A biosynthesis and lay the groundwork for engineering such framework-modifying enzymes in type II PKSs.
Collapse
Affiliation(s)
- David R. Jackson
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Xia Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Guojung Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Avinash B. Patel
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jordi Calveras
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jesus F. Barajas
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Eita Sasaki
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Hung-wen Liu
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jürgen Rohr
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shiou-Chuan Tsai
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
Guo F, Xiang S, Li L, Wang B, Rajasärkkä J, Gröndahl-Yli-Hannuksela K, Ai G, Metsä-Ketelä M, Yang K. Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab Eng 2014; 28:134-142. [PMID: 25554073 DOI: 10.1016/j.ymben.2014.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
Abstract
The continuously increasing genome sequencing data has revealed numerous cryptic pathways, which might encode novel secondary metabolites with interesting biological activities. However, utilization of this hidden potential has been hindered by the observation that many of these gene clusters remain silent (or poorly expressed) under laboratory conditions. Here we present reporter-guided mutant selection (RGMS) as an effective and widely applicable method for targeted activation of silent gene clusters in the native producers. The strategy takes advantage of genome-scale random mutagenesis for generation of genetic diversity and a reporter-guided selection system for the identification of the desired target-activated mutants. It was first validated in the re-activation of jadomycin biosynthesis in Streptomyces venezuelae ISP5230, where high efficiency of activation was achieved. The same strategy was then applied to a hitherto unactivable pga gene cluster in Streptomyces sp. PGA64 leading to the identification of two new anthraquinone aminoglycosides, gaudimycin D and E.
Collapse
Affiliation(s)
- Fang Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People׳s Republic of China
| | - Sihai Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China
| | - Liyuan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China
| | - Bin Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People׳s Republic of China
| | - Johanna Rajasärkkä
- Department of Biochemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland
| | | | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China.
| |
Collapse
|
16
|
Patrikainen P, Niiranen L, Thapa K, Paananen P, Tähtinen P, Mäntsälä P, Niemi J, Metsä-Ketelä M. Structure-Based Engineering of Angucyclinone 6-Ketoreductases. ACTA ACUST UNITED AC 2014; 21:1381-1391. [DOI: 10.1016/j.chembiol.2014.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
17
|
Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci U S A 2014; 111:5688-93. [PMID: 24706927 DOI: 10.1073/pnas.1324253111] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The angucycline antibiotic jadomycin B (JdB) produced by Streptomyces venezuelae has been found here to induce complex survival responses in Streptomyces coelicolor at subinhibitory concentration. The receptor for JdB was identified as a "pseudo" gamma-butyrolactone receptor, ScbR2, which was shown to bind two previously unidentified target promoters, those of redD (redDp) and adpA (adpAp), thus directly regulating undecylprodigiosin (Red) production and morphological differentiation, respectively. Because AdpA also directly regulates the expression of redD, ScbR2, AdpA, and RedD together form a feed-forward loop controlling both differentiation and Red production phenotypes. Different signal strengths (i.e., JdB concentrations) were shown to induce the two different phenotypes by modulating the relative transcription levels of adpA vs. redD. The induction of morphological differentiation and endogenous antibiotic production by exogenous antibiotic exemplifies an important survival strategy more sophisticated than the induction of antibiotic resistance.
Collapse
|
18
|
Park HB, Lee JK, Lee KR, Kwon HC. Angumycinones A and B, two new angucyclic quinones from Streptomyces sp. KMC004 isolated from acidic mine drainage. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Paananen P, Patrikainen P, Kallio P, Mäntsälä P, Niemi J, Niiranen L, Metsä-Ketelä M. Structural and Functional Analysis of Angucycline C-6 Ketoreductase LanV Involved in Landomycin Biosynthesis. Biochemistry 2013; 52:5304-14. [DOI: 10.1021/bi400712q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pasi Paananen
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pekka Patrikainen
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pauli Kallio
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pekka Mäntsälä
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Jarmo Niemi
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Laila Niiranen
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
20
|
Vila-Gisbert S, Urbano A, Carreño MC. Model studies towards the challenging angularly-oxygenated core of several angucyclinones from an oxidative dearomatization strategy. Chem Commun (Camb) 2013; 49:3561-3. [DOI: 10.1039/c3cc41221k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Abstract
Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C(4a) and N(5) of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
22
|
Patrikainen P, Kallio P, Fan K, Klika KD, Shaaban KA, Mäntsälä P, Rohr J, Yang K, Niemi J, Metsä-Ketelä M. Tailoring enzymes involved in the biosynthesis of angucyclines contain latent context-dependent catalytic activities. ACTA ACUST UNITED AC 2012; 19:647-55. [PMID: 22633416 DOI: 10.1016/j.chembiol.2012.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/07/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Comparison of homologous angucycline modification enzymes from five closely related Streptomyces pathways (pga, cab, jad, urd, lan) allowed us to deduce the biosynthetic steps responsible for the three alternative outcomes: gaudimycin C, dehydrorabelomycin, and 11-deoxylandomycinone. The C-12b-hydroxylated urdamycin and gaudimycin metabolites appear to be the ancestral representatives from which landomycins and jadomysins have evolved as a result of functional divergence of the ketoreductase LanV and hydroxylase JadH, respectively. Specifically, LanV has acquired affinity for an earlier biosynthetic intermediate resulting in a switch in biosynthetic order and lack of hydroxyls at C-4a and C-12b, whereas in JadH, C-4a/C-12b dehydration has evolved into an independent secondary function replacing C-12b hydroxylation. Importantly, the study reveals that many of the modification enzymes carry several alternative, hidden, or ancestral catalytic functions, which are strictly dependent on the biosynthetic context.
Collapse
Affiliation(s)
- Pekka Patrikainen
- Department of Biochemistry and Food Chemistry, University of Turku, 20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kharel MK, Rohr J. Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Curr Opin Chem Biol 2012; 16:150-61. [PMID: 22465094 DOI: 10.1016/j.cbpa.2012.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/30/2022]
Abstract
The exact sequence of events in biosyntheses of natural products is essential not only to understand and learn from nature's strategies and tricks to assemble complex natural products, but also for yield optimization of desired natural products, and for pathway engineering and muta-synthetic preparation of analogues of bioactive natural products. Biosyntheses of natural products were classically studied applying in vivo experiments, usually by combining incorporation experiments with stable-isotope labeled precursors with cross-feeding experiments of putative intermediates. Later genetic studies were dominant, which consist of gene cluster determination and analysis of gene inactivation experiments. From such studies various biosynthetic pathways were proposed, to a large extent just through in silico analyses of the biosynthetic gene clusters after DNA sequencing. Investigations of the complex biosyntheses of the angucycline group anticancer drugs landomycin, jadomycin and gilvocarcin revealed that in vivo and in silico studies were insufficient to delineate the true biosynthetic sequence of events. Neither was it possible to unambiguously assign enzyme activities, especially where multiple functional enzymes were involved. However, many of the intriguing ambiguities could be solved after in vitro reconstitution of major segments of these pathways, and subsequent systematic variations of the used enzyme mixtures. This method has been recently termed 'combinatorial biosynthetic enzymology'.
Collapse
Affiliation(s)
- Madan K Kharel
- Midway College School of Pharmacy, 120 Scott Perry Drive, Paintsville, KY 42240, USA
| | | |
Collapse
|
24
|
Kharel MK, Pahari P, Shaaban KA, Wang G, Morris C, Rohr J. Elucidation of post-PKS tailoring steps involved in landomycin biosynthesis. Org Biomol Chem 2012; 10:4256-65. [PMID: 22454092 DOI: 10.1039/c2ob07171a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functional roles of all proposed enzymes involved in the post-PKS redox reactions of the biosynthesis of various landomycin aglycones were thoroughly studied, both in vivo and in vitro. The results revealed that LanM2 acts as a dehydratase and is responsible for concomitant release of the last PKS-tethered intermediate to yield prejadomycin (10). Prejadomycin (10) was confirmed to be a general pathway intermediate of the biosynthesis. Oxygenase LanE and the reductase LanV are sufficient to convert 10 into 11-deoxylandomycinone (5) in the presence of NADH. LanZ4 is a reductase providing reduced flavin (FMNH) co-factor to the partner enzyme LanZ5, which controls all remaining steps. LanZ5, a bifunctional oxygenase-dehydratase, is a key enzyme directing landomycin biosynthesis. It catalyzes hydroxylation at the 11-position preferentially only after the first glycosylation step, and requires the presence of LanZ4. In the absence of such a glycosylation, LanZ5 catalyzes C5,6-dehydration, leading to the production of anhydrolandomycinone (8) or tetrangulol (9). The overall results provided a revised pathway for the biosynthesis of the four aglycones that are found in various congeners of the landomycin group.
Collapse
Affiliation(s)
- Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 2012; 29:264-325. [PMID: 22186970 PMCID: PMC11412254 DOI: 10.1039/c1np00068c] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1997 to 2010. The angucycline group is the largest group of type II PKS-engineered natural products, rich in biological activities and chemical scaffolds. This stimulated synthetic creativity and biosynthetic inquisitiveness. The synthetic studies used five different strategies, involving Diels-Alder reactions, nucleophilic additions, electrophilic additions, transition-metal mediated cross-couplings and intramolecular cyclizations to generate the angucycline frames. Biosynthetic studies were particularly intriguing when unusual framework rearrangements by post-PKS tailoring oxidoreductases occurred, or when unusual glycosylation reactions were involved in decorating the benz[a]anthracene-derived cores. This review follows our previous reviews, which were published in 1992 and 1997, and covers new angucycline group antibiotics published between 1997 and 2010. However, in contrast to the previous reviews, the main focus of this article is on new synthetic approaches and biosynthetic investigations, most of which were published between 1997 and 2010, but go beyond, e.g. for some biosyntheses all the way back to the 1980s, to provide the necessary context of information.
Collapse
Affiliation(s)
- Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, Kentucky 40536-0596, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Montersino S, van Berkel WJH. Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:433-42. [PMID: 22207056 DOI: 10.1016/j.bbapap.2011.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 12/11/2022]
Abstract
The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.
Collapse
|
27
|
Montersino S, Tischler D, Gassner GT, van Berkel WJH. Catalytic and Structural Features of Flavoprotein Hydroxylases and Epoxidases. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100384] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Kallio P, Patrikainen P, Suomela JP, Mäntsälä P, Metsä-Ketelä M, Niemi J. Flavoprotein hydroxylase PgaE catalyzes two consecutive oxygen-dependent tailoring reactions in angucycline biosynthesis. Biochemistry 2011; 50:5535-43. [PMID: 21595438 DOI: 10.1021/bi200600k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simplified model system composed of a NADPH-dependent flavoprotein hydroxylase PgaE and a short-chain alcohol dehydrogenase/reductase (SDR) CabV was used to dissect a multistep angucycline modification redox cascade into several subreactions in vitro. We demonstrate that the two enzymes are sufficient for the conversion of angucycline substrate 2,3-dehydro-UWM6 to gaudimycin C. The flavoenzyme PgaE is shown to be responsible for two consecutive NADPH- and O(2)-dependent reactions, consistent with the enzyme-catalyzed incorporation of oxygen atoms at C-12 and C-12b in gaudimycin C. The two reactions do not significantly overlap, and the second catalytic cycle is initiated only after the original substrate 2,3-dehydro-UWM6 is nearly depleted. This allowed us to isolate the product of the first reaction at limiting NADPH concentrations and allowed the study of the qualitative and kinetic properties of the separated reactions. Dissection of the reaction cascade also allowed us to establish that the SDR reductase CabV catalyzes the final biosynthetic step, which is closely coupled to the second PgaE reaction. In the absence of CabV, the complete PgaE reaction leads invariably to product degradation, whereas in its presence, the reaction yields the final product, gaudimycin C. The result implies that the C-6 ketoreduction step catalyzed by CabV is required for stabilization of a reactive intermediate. The close relationship between PgaE and CabV would explain previous in vivo observations: why the absence of a reductase gene may result in the lack of C-12b-oxygenated species and, vice versa, why all C-12b-oxygenated angucyclines appear to have undergone reduction at position C-6.
Collapse
Affiliation(s)
- Pauli Kallio
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
29
|
Chen Y, Fan K, He Y, Xu X, Peng Y, Yu T, Jia C, Yang K. Characterization of JadH as an FAD- and NAD(P)H-dependent bifunctional hydroxylase/dehydrase in jadomycin biosynthesis. Chembiochem 2010; 11:1055-60. [PMID: 20422670 DOI: 10.1002/cbic.201000178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences,University of Wisconsin, Madison, WI 53705 78, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grocholski T, Koskiniemi H, Lindqvist Y, Mäntsälä P, Niemi J, Schneider G. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 2010; 49:934-44. [PMID: 20052967 DOI: 10.1021/bi901985b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SnoaB is a cofactor-independent monooxygenase that catalyzes the conversion of 12-deoxynogalonic acid to nogalonic acid in the biosynthesis of the aromatic polyketide nogalamycin in Streptomyces nogalater. In vitro (18)O(2) experiments establish that the oxygen atom incorporated into the substrate is derived from molecular oxygen. The crystal structure of the enzyme was determined in two different space groups to 1.7 and 1.9 A resolution, respectively. The enzyme displays the ferredoxin fold, with the characteristic beta-strand exchange at the dimer interface. The crystal structures reveal a putative catalytic triad involving two asparagine residues, Asn18 and Asn63, and a water molecule, which may play important roles in the enzymatic reaction. Site-directed mutagenesis experiments, replacing the two asparagines individually by alanine, led to a 100-fold drop in enzymatic activity. Replacement of an invariant tryptophan residue in the active site of the enzyme by phenylalanine also resulted in an enzyme variant with about 1% residual activity. Taken together, our findings are most consistent with a carbanion mechanism where the deprotonated substrate reacts with molecular oxygen via one electron transfer and formation of a caged radical.
Collapse
Affiliation(s)
- Thadee Grocholski
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
31
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Beam MP, Bosserman MA, Noinaj N, Wehenkel M, Rohr J. Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway . Biochemistry 2009; 48:4476-87. [PMID: 19364090 PMCID: PMC2713373 DOI: 10.1021/bi8023509] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis.
Collapse
Affiliation(s)
- Miranda P. Beam
- Department of Pharmaceutical Sciences, College of Pharmacy, and the Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Mary A. Bosserman
- Department of Pharmaceutical Sciences, College of Pharmacy, and the Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Nicholas Noinaj
- Department of Molecular and Cellular Biochemistry and Kentucky Center of Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Marie Wehenkel
- Department of Pharmaceutical Sciences, College of Pharmacy, and the Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, and the Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
33
|
|