1
|
El-Saghier AM, Enaili SS, Abdou A, Hamed AM, Kadry AM. Synthesis, docking and biological evaluation of purine-5- N-isosteresas anti-inflammatory agents. RSC Adv 2024; 14:17785-17800. [PMID: 38832248 PMCID: PMC11146149 DOI: 10.1039/d4ra02970d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
An operationally simple one-pot three-component and convenient synthesis method for a series of diverse purine analogues of 5-amino-7-(substituted)-N-(4-sulfamoylphenyl)-4,7-dihydro-[1,2,4]-triazolo[1,5-a][1,3,5]triazine-2-carboxamide derivatives generated in situ via the reaction of 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide, cyanoguanidine and a variety of aldehydes was achieved under green conditions. This experiment was conducted to evaluate the anti-inflammatory effect of the newly synthesized compounds using indomethacin as a reference medication; all compounds were tested for in vitro anti-inflammatory activity using the inhibition of albumin denaturation, RBC hemolysis technique and COX inhibition assay. The results showed that all evaluated compounds exhibited significant in vitro anti-inflammatory efficacy leading to excellently effective RBC membrane stabilization, inhibition of protein denaturation, and inhibition of COX enzymes when compared to those of indomethacin. At concentrations of 50, 100, 200, and 300 μg ml-1, these compounds decreased COX-1 and COX-2 activities more than indomethacin and have IC50 values in the range of 40.04-87.29 μg ml-1 for COX-1 and 27.76-42.3 μg ml-1 for COX-2 while indomethacin showed IC50 = 91.57 for COX-1 and 42.66 μg ml-1 for COX-2. The anti-inflammatory findings show the need for more investigation to define the properties underlying the evaluated compounds' anti-inflammatory abilities. The enzyme cyclooxygenase-2 (COX 2) (PDB ID: 5IKT) was docked with ten synthetic substances. With docking scores (S) of -8.82, -7.82, and -7.76 kcal mol-1, 7-furan triazolo-triazine (4), 7-(2-hydroxy phenyl) triazolo-triazine (11), and 7-(4-dimethylamino phenyl) triazolo-triazine (12) had the greatest binding affinities, respectively. Therefore, these substances have COX-2 (PDB ID: 5IKT) inhibitory capabilities and hence may be investigated for COX 2 targeting development. Furthermore, both the top-ranked compounds (4 and 11) and the standard indomethacin were subjected to DFT analysis. The HOMO - LUMO energy difference (ΔE) of the mentioned compounds was found to be less than that of indomethacin.
Collapse
Affiliation(s)
- Ahmed M El-Saghier
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Souhaila S Enaili
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
- Chemistry Department, Faculty of Science, Al Zawiya University Al Zawiya Libya
| | - Aly Abdou
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Amany M Hamed
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Asmaa M Kadry
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| |
Collapse
|
2
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Yamaguchi T, Asano Y. Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: A review. J Biotechnol 2024; 384:20-28. [PMID: 38395363 DOI: 10.1016/j.jbiotec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
5
|
Li H, Huang JW, Dai L, Zheng H, Dai S, Zhang Q, Yao L, Yang Y, Yang Y, Min J, Guo RT, Chen CC. The structural and functional investigation into an unusual nitrile synthase. Nat Commun 2023; 14:7425. [PMID: 37973794 PMCID: PMC10654658 DOI: 10.1038/s41467-023-43285-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
The biosynthesis of neurotoxin aetokthonotoxin (AETX) that features a unique structure of pentabrominated biindole nitrile involves a first-of-its-kind nitrile synthase termed AetD, an enzyme that shares very low sequence identity to known structures and catalyzes an unprecedented mechanism. In this study, we resolve the crystal structure of AetD in complex with the substrate 5,7-di-Br-L-Trp. AetD adopts the heme oxygenase like fold and forms a hydrophobic cavity within a helical bundle to accommodate the indole moiety. A diiron cluster comprising two irons that serves as a catalytic center binds to the carboxyl O and the amino N of the substrate. Notably, we demonstrate that the AetD-catalyzed reaction is independent of the bromination of the substrate and also solved crystal structures of AetD in complex with 5-Br-L-Trp and L-Trp. Altogether, the present study reveals the substrate-binding pattern and validates the diiron cluster-comprising active center of AetD, which should provide important basis to support the mechanistic investigations into this class of nitrile synthase.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Haibin Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Si Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Qishan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Licheng Yao
- Hubei Gongtong Steroid Drug Research Institute, Wuhan, 430073, PR China
| | - Yunyun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Song Y, Zhang X, Zhang Z, Shentu X, Yu X. Physiology and Transcriptional Analysis of ppGpp-Related Regulatory Effects in Streptomyces diastatochromogenes 1628. Microbiol Spectr 2023; 11:e0120022. [PMID: 36475882 PMCID: PMC9927088 DOI: 10.1128/spectrum.01200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ppGpp is a ubiquitous small nucleotide messenger that mediates cellular self-protective responses under environmental stress. However, the mechanisms of ppGpp that control transcription and other metabolic processes depend on the species, and ppGpp regulates the same process via different mechanisms. The level of ppGpp is regulated by RelA/SpoT homolog (RSH) enzymes that synthesize and hydrolyze the alarmone. Here, we constructed a ppGpp0 strain and monitored the effects of ppGpp on the transcriptional level, physiology, and secondary metabiotic production in the antibiotic producer Streptomyces diastatochromogenes 1628. The results showed the cell division and growth of ppGpp0 increased by measurement of gene transcription and DCWs. The utilization of nitrogen was affected depending on the nitrogen type with a significantly higher DCW of the ppGpp0 mutant in the medium supplied with the yeast extract and a lower growth rate in the inorganic nitrogen ammonium salt. The ppGpp-mediated stringent response could not affect the usage of carbon resources. More importantly, ppGpp0 inhibited the expression of antibiotic clusters and the production of toyocamycin and tetramycin P. The antibiotic resistance was also significantly downregulated in the ppGpp0 mutant. In conclusion, this study showed detailed changes in ppGpp-mediated stringent responses on S. diastatochromogenes 1628 cell growth, nutrient utilization, morphological characteristics, antibiotic production, and resistance, which will provide insights into the role of ppGpp in Streptomyces. IMPORTANCE The ppGpp-mediated stringent response is widely distributed in Escherichia coli, Bacillus subtilis, Streptomyces, Staphylococcus aureus, etc. Stringent responses give strains the ability to resist environmental stresses, and survival from nutrition starvation, virulence, long-term persistence, biofilm formation, and gut colonization. ppGpp has many targets in cells and can reprogram DNA replication, transcription, ribosome biogenesis and function, and lipid metabolism. However, the mechanism of ppGpp to control transcription and other metabolic processes depends on the bacterial species and regulates the same process via a different mechanism. In Streptomyces, how ppGpp regulates the transcription remains to be elucidated. However, because ppGpp regulates many genes involved in primary and secondary metabolism, we compared the transcription and cell division, cell growth, morphological differentiation, antibiotic resistance, and secondary synthesis in the wild-type S. diastatochromogenes and ppGpp0 strains.
Collapse
Affiliation(s)
- Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiangli Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
7
|
Pasternak ARO, Balunas MJ, Zechel DL. Discovery of 3'- O-β-Glucosyltubercidin and the Nucleoside Specific Glycosyltransferase AvpGT through Genome Mining. ACS Chem Biol 2022; 17:3507-3514. [PMID: 36356213 DOI: 10.1021/acschembio.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A genome mining approach was used to identify a hybrid tubercidin-nucleocidin biosynthetic gene cluster (BGC) in Streptomyces sp. AVP053U2. Analysis of culture extracts by liquid chromatography-mass spectrometry revealed the presence of a glucosylated tubercidin derivative. A gene, avpGT, was identified within the hybrid cluster that has homology to the glucosyltransferase that is responsible for 3'-O-β-glucosylation of the fluorinated natural product nucleocidin. AvpGT was heterologously expressed and purified from Escherichia coli for in vitro characterization. AvpGT is active toward UDP-glucose and UDP-galactose as glycosyl donors and several nucleosides as acceptors. Kinetic analysis revealed that AvpGT is most specific for UDP-glucose [kcat/KMapp = (1.1 ± 0.3) × 105 M-1·s-1] as the glycosyl donor and tubercidin [kcat/KMapp = (5.3 ± 1.8) × 104 M-1·s-1] as the glycosyl acceptor. NMR spectroscopic analysis revealed the product of this reaction to be 3'-O-β-glucopyranosyl tubercidin. A sequence analysis of AvpGT reveals a family of nucleoside-specific GTs, which may be used as markers of BGCs that produce glycosylated nucleosides.
Collapse
Affiliation(s)
- A R Ola Pasternak
- Department of Chemistry, Queen's University, Kingston, K7L 3N6 Ontario, Canada
| | - Marcy J Balunas
- Departments of Microbiology and Immunology and Medicinal Chemistry, University of Michigan, Ann Arbor, 48109 Michigan, United States
| | - David L Zechel
- Department of Chemistry, Queen's University, Kingston, K7L 3N6 Ontario, Canada
| |
Collapse
|
8
|
Genome Shuffling Mutant of Streptomyces diastatochromogenes for Substantial Improvement of Toyocamycin Production. FERMENTATION 2022. [DOI: 10.3390/fermentation8100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Toyocamycin, a nucleoside antibiotic, is a fungicide with the potential to control plant pathogens. In this study, three rounds of genome shuffling screening were applied to enhance the toyocamycin production in Streptomyces diastatochromogenes 1628. After three rounds of genome-shuffling screening, the toyocamycin production increased by 10.8-fold that of wild-type, and 2.64-fold of its parental strain. By optimization of its nutrition condition in medium, the highest production of toyocamycin reached 1173.6 mg/L in TY-producing medium. In addition, the mechanism for the improvement of shuffled strains was investigated. Recombinants with increased toyocamycin production exhibited higher transcriptional level of the toy cluster and product resistance. Furthermore, the rise of ATP hydrolysis rate indicated that intracellular ATP exhibit a significant role in tuning the toy cluster by an ATP-binding pathway-specific regulator. In all, we obtained S. diastatochromogenes mutants with enhanced toyocamycin production, and provided a valuable clue for the activation of secondary metabolites.
Collapse
|
9
|
Bandarian V. Journey on the Radical SAM Road as an Accidental Pilgrim. ACS BIO & MED CHEM AU 2022; 2:187-195. [PMID: 35726327 PMCID: PMC9204691 DOI: 10.1021/acsbiomedchemau.1c00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
![]()
Radical S-adenosyl-l-methionine (SAM)
enzymes catalyze a diverse group of complex transformations in all
aspects of cellular physiology. These metalloenzymes bind SAM to a
4Fe–4S cluster and reductively cleave SAM to generate a 5′-deoxyadenosyl
radical, which generally initiates the catalytic cycle by catalyzing
a H atom to activate the substrate for subsequent chemistry. This
perspective will focus on our discovery of several members of this
superfamily of enzymes, with a particular emphasis on the current
state of the field, challenges, and outlook.
Collapse
Affiliation(s)
- Vahe Bandarian
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Liu B, Wei Q, Yang M, Shi L, Zhang K, Ge B. Effect of toyF on wuyiencin and toyocamycin production by Streptomyces albulus CK-15. World J Microbiol Biotechnol 2022; 38:65. [PMID: 35229201 DOI: 10.1007/s11274-022-03234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Streptomyces albulus CK-15 produces various secondary metabolites, including the antibiotics wuyiencin and toyocamycin, which can reportedly control a broad range of plant fungal diseases. The production of these nucleoside antibiotics in CK-15 is regulated by two biosynthesis gene clusters. To investigate the potential effect of toyocamycin biosynthesis on wuyiencin production, we herein generated S. albulus strains in which a key gene in the toyocamycin biosynthesis gene cluster, namely toyF, was either deleted or overexpressed. The toyF deletion mutant ∆toyF did not produce toyocamycin, while the production of wuyiencin increased by 23.06% in comparison with that in the wild-type (WT) strain. In addition, ΔtoyF reached the highest production level of wuyiencin 4 h faster than the WT strain (60 h vs. and 64 h). Further, toyocamycin production by the toyF overexpression strain was two-fold higher than by the WT strain, while wuyiencin production was reduced by 29.10%. qRT-PCR showed that most genes in the toyocamycin biosynthesis gene cluster were expressed at lower levels in ∆toyF as compared with those in the WT strain, while the expression levels of genes in the wuyiencin biosynthesis gene cluster were upregulated. Finally, the growth rate of ∆toyF was much faster than that of the WT strain when cultured on solid or liquid medium. Based on our findings, we report that in industrial fermentation processes, ∆toyF has the potential to increase the production of wuyiencin and reduce the timeframe of fermentation.
Collapse
Affiliation(s)
- Binghua Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Qiuhe Wei
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoling Yang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Zhang J, Xu J, Li H, Zhang Y, Ma Z, Bechthold A, Yu X. Enhancement of toyocamycin production through increasing supply of precursor GTP in Streptomyces diastatochromogenes 1628. J Basic Microbiol 2022; 62:750-759. [PMID: 35076122 DOI: 10.1002/jobm.202100622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 11/07/2022]
Abstract
The nucleoside antibiotic toyocamycin (TM), which is produced by Streptomyces diastatochromogenes 1628, exhibits potent activity against a broad range of phytopathogenic fungi. TM was synthesized through a multi-step reaction, using guanosine triphosphate (GTP) as precursor. Based on a comparison of proteomics data from S. diastatochromogenes 1628 and rifamycin-resistant mutant 1628-T15 with high yield of TM, we determined that the differentially expressed protein X0NBV6 called ribose-phosphate pyrophosphokinase (RHP), which is a rate-limiting enzyme involved in the de novo biosynthesis of GTP, exhibits a higher expression level in mutant 1628-T15. In this study, to elucidate the relationships between RHP, GTP, and TM production, the gene rhp sd encoding RHP was cloned and overexpressed in S. diastatochromogenes strain 1628. The recombinant strain S. diastatochromogenes 1628-RHP exhibited better performance at the transcriptional level of the rhp sd gene, as well as RHP enzymatic activity, intracellular GTP concentration, and TM production, compared to S. diastatochromogenes 1628. Finally, the yield of TM produced by S. diastatochromogenes 1628-RHP (340.2 mg/L) was 133.3% higher than that produced by S. diastatochromogenes1628. Moreover, the transcriptional level of toy genes involved in TM biosynthesis was enhanced due to the overexpression of the rhp sd gene.
Collapse
Affiliation(s)
- Jinyao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Huijie Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yongyong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhang WH, Wang F, Wang YL, You S, Pan HX, Tang GL. Identification and Characterization of Enzymes Catalyzing Early Steps in Miharamycin and Amipurimycin Biosynthesis. Org Lett 2021; 23:8761-8765. [PMID: 34747180 DOI: 10.1021/acs.orglett.1c03254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biochemical elucidation of the early biosynthetic pathways of miharamycins and amipurimycin revealed the roles of several enzymes, which include GMP hydrolase, represented by MihD/ApmD, and hypothetical proteins, MihI/ApmI, unexpectedly exhibiting the dual function of the guanylglucuronic acid assembly and GMP cleavage. In addition, MihE, a carbonyl reductase that functions on the C2 branch of high-carbon sugars, and MihF, a rare guanine O-methyltransferase, were also functionally verified.
Collapse
Affiliation(s)
- Wen-He Zhang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Fei Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
| | - Yi-Lin Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
| | - Song You
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Hai-Xue Pan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of CAS, CAS, Shanghai 200032, China
| | - Gong-Li Tang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (CAS), Hangzhou 310024, China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of CAS, CAS, Shanghai 200032, China
| |
Collapse
|
13
|
Hennessy AJ, Huang W, Savary C, Campopiano DJ. Creation of an engineered amide synthetase biocatalyst by the rational separation of a two-step nitrile synthetase. Chembiochem 2021; 23:e202100411. [PMID: 34699108 DOI: 10.1002/cbic.202100411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/08/2022]
Abstract
The synthesis of amides through acid and amine coupling is one of the most commonly-used reactions in medicinal chemistry, yet still requires atom-inefficient coupling reagents. There is a current demand to develop greener, biocatalytic approaches to amide bond formation. The nitriles synthetases (NSs) enzymes are a small family of ATP-dependent enzymes which catalyse the transformation of a carboxylic acid into the corresponding nitrile via an amide intermediate. The B. subtilis QueC (BsQueC) is a NS involved in the synthesis of 7-cyano-7-deazaguanine (CDG) natural products. Through sequence homology and structural analysis of BsQueC we identified three highly-conserved residues, which could potentially play important roles in NS substrate binding and catalysis. Rational engineering led to the creation of a NS K163A/R204A biocatalyst that converts the CDG acid into the primary amide, but does not proceed to the nitrile. This study suggests that NSs could be further developed for coupling agent-free, amide-forming biocatalysts.
Collapse
Affiliation(s)
| | - Wenli Huang
- The University of Edinburgh, School of Chemistry, UNITED KINGDOM
| | - Chloé Savary
- The University of Edinburgh, School of Chemistry, UNITED KINGDOM
| | - Dominic James Campopiano
- The Joseph Black Chemistry Building The King's Buildings, School of Chemistry, EastChem, David Brewster Road, EH9 3FJ, Edinburgh, UNITED KINGDOM
| |
Collapse
|
14
|
Hu Y, Wang J, Xu J, Ma Z, Bechthold A, Yu X. Effects of S-adenosylmethionine on production of secondary metabolites in Streptomycesdiastatochromogenes 1628. J Zhejiang Univ Sci B 2021; 22:767-773. [PMID: 34514756 DOI: 10.1631/jzus.b2100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Streptomyces are famous for their ability to synthesize a large number of bioactive compounds as secondary metabolites containing antibiotics, enzyme inhibitors, and other small molecules with potential physiological activity (Niu et al., 2016; Song et al., 2019; Yin et al., 2019). Secondary metabolites are produced by a multi-step reaction of a primary metabolite as a precursor (Liu et al., 2013; Li et al., 2021). Therefore, it is of great research significance to increase the overall synthesis level of antibiotics by increasing the amount of synthesis of precursors.
Collapse
Affiliation(s)
- Yefeng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Juan Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
15
|
Snyder DT, Lin YF, Somogyi A, Wysocki V. Tandem surface-induced dissociation of protein complexes on an ultrahigh resolution platform. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 461:116503. [PMID: 33889055 PMCID: PMC8057730 DOI: 10.1016/j.ijms.2020.116503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe instrumentation for conducting tandem surface-induced dissociation (tSID) of native protein complexes on an ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The two stages of SID are accomplished with split lenses replacing the entrance lenses of the quadrupole mass filter (stage 1, referred to herein as SID-Q) and the collision cell (stage 2, Q-SID). After SID-Q, the scattered projectile ions and subcomplexes formed in transit traverse the 20 mm pre-filter prior to the mass-selecting quadrupole, providing preliminary insights into the SID fragmentation kinetics of noncovalent protein complexes. The isolated SID fragments (subcomplexes) are then fragmented by SID in the collision cell entrance lens (Q-SID), generating subcomplexes of subcomplexes. We show that the ultrahigh resolution of the FT-ICR can be used for deconvolving species overlapping in m/z, which are particularly prominent in tandem SID spectra due to the combination of symmetric charge partitioning and narrow product ion charge state distributions. Various protein complex topologies are explored, including homotetramers, homopentamers, a homohexamer, and a heterohexamer.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| | - Arpad Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Vicki Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| |
Collapse
|
16
|
Ma Z, Hu Y, Liao Z, Xu J, Xu X, Bechthold A, Yu X. Cloning and Overexpression of the Toy Cluster for Titer Improvement of Toyocamycin in Streptomyces diastatochromogenes. Front Microbiol 2020; 11:2074. [PMID: 32983052 PMCID: PMC7492574 DOI: 10.3389/fmicb.2020.02074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
The nucleoside antibiotic toyocamycin (TM) is a potential fungicide that can control plant diseases, and it has become an attractive target for research. Streptomyces diastatochromogenes 1628, a TM-producing strain, was isolated by our laboratory and was considered to be a potent industrial producer of TM. Recently, the putative TM biosynthetic gene cluster (toy cluster) in S. diastatochromogenes 1628 was found by genome sequencing. In this study, the role of toy cluster for TM biosynthesis in S. diastatochromogenes 1628 was investigated by heterologous expression, deletion, and complementation. The extract of the recombinant strain S. albusJ1074-TC harboring a copy of toy cluster produced TM as shown by HPLC analysis. The Δcluster mutant completely lost its ability to produce TM. TM production in the complemented strain was restored to a level comparable to that of the wild-type strain. These results confirmed that the toy cluster is responsible for TM biosynthesis. Moreover, the introduction of an extra copy of the toy cluster into S. diastatochromogenes 1628 led to onefold increase in TM production (312.9 mg/l vs. 152.1 mg/l) as well as the transcription of all toy genes. The toy gene cluster was engineered in which the native promoter of toyA gene, toyM gene, toyBD operon, and toyEI operon was, respectively, replaced by permE∗ or SPL57. To further improve TM production, the engineered toy gene cluster was, respectively, introduced and overexpressed in S. diastatochromogenes 1628 to generate recombinant strains S. diastatochromogenes 1628-EC and 1628-SC. After 84 h, S. diastatochromogenes 1628-EC and 1628-SC produced 456.5 mg/l and 638.9 mg/l TM, respectively, which is an increase of 2- and 3.2-fold compared with the wild-type strain.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yefeng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianhao Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
17
|
Schroeder GM, Dutta D, Cavender CE, Jenkins J, Pritchett EM, Baker CD, Ashton JM, Mathews DH, Wedekind JE. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. Nucleic Acids Res 2020; 48:8146-8164. [PMID: 32597951 PMCID: PMC7641330 DOI: 10.1093/nar/gkaa546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023] Open
Abstract
Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.65 Å-resolution. Both pseudoknots exhibited the elusive L2 loop, which displayed distinct conformations. Conversely, the Shine-Dalgarno sequence (SDS) in the S2 helix of each structure remained unbroken. The expectation that the effector-free state should expose the SDS prompted us to conduct solution experiments to delineate environmental changes to specific nucleobases in response to preQ1. We then used nudged elastic band computational methods to derive conformational-change pathways linking the crystallographically-determined effector-free and bound-state structures. Pathways featured: (i) unstacking and unpairing of L2 and S2 nucleobases without preQ1-exposing the SDS for translation and (ii) stacking and pairing L2 and S2 nucleobases with preQ1-sequestering the SDS. Our results reveal how preQ1 binding reorganizes L2 into a nucleobase-stacking spine that sequesters the SDS, linking effector recognition to biological function. The generality of stacking spines as conduits for effector-dependent, interdomain communication is discussed in light of their existence in adenine riboswitches, as well as the turnip yellow mosaic virus ribosome sensor.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Shuai H, Myronovskyi M, Nadmid S, Luzhetskyy A. Identification of a Biosynthetic Gene Cluster Responsible for the Production of a New Pyrrolopyrimidine Natural Product-Huimycin. Biomolecules 2020; 10:biom10071074. [PMID: 32708402 PMCID: PMC7439116 DOI: 10.3390/biom10071074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Pyrrolopyrimidines are an important class of natural products with a broad spectrum of biological activities, including antibacterial, antifungal, antiviral, anticancer or anti-inflammatory. Here, we present the identification of a biosynthetic gene cluster from the rare actinomycete strain Kutzneria albida DSM 43870, which leads to the production of huimycin, a new member of the pyrrolopyrimidine family of compounds. The huimycin gene cluster was successfully expressed in the heterologous host strain Streptomyces albus Del14. The compound was purified, and its structure was elucidated by means of nuclear magnetic resonance spectroscopy. The minimal huimycin gene cluster was identified through sequence analysis and a series of gene deletion experiments. A model for huimycin biosynthesis is also proposed in this paper.
Collapse
Affiliation(s)
- Hui Shuai
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (H.S.); (M.M.); (S.N.)
| | - Maksym Myronovskyi
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (H.S.); (M.M.); (S.N.)
| | - Suvd Nadmid
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (H.S.); (M.M.); (S.N.)
- School of Pharmacy, Mongolian National University of Medical Sciences, S. Zorig Street, 14210 Ulaanbaatar, Mongolia
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (H.S.); (M.M.); (S.N.)
- Helmholtz-Institut für Pharmazeutische Forschung Saarland, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-0681-70223
| |
Collapse
|
19
|
Dutta D, Wedekind JE. Nucleobase mutants of a bacterial preQ 1-II riboswitch that uncouple metabolite sensing from gene regulation. J Biol Chem 2020; 295:2555-2567. [PMID: 31659117 PMCID: PMC7049981 DOI: 10.1074/jbc.ra119.010755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Indexed: 11/06/2022] Open
Abstract
Riboswitches are a class of nonprotein-coding RNAs that directly sense cellular metabolites to regulate gene expression. They are model systems for analyzing RNA-ligand interactions and are established targets for antibacterial agents. Many studies have analyzed the ligand-binding properties of riboswitches, but this work has outpaced our understanding of the underlying chemical pathways that govern riboswitch-controlled gene expression. To address this knowledge gap, we prepared 15 mutants of the preQ1-II riboswitch-a structurally and biochemically well-characterized HLout pseudoknot that recognizes the metabolite prequeuosine1 (preQ1). The mutants span the preQ1-binding pocket through the adjoining Shine-Dalgarno sequence (SDS) and include A-minor motifs, pseudoknot-insertion helix P4, U·A-U base triples, and canonical G-C pairs in the anti-SDS. As predicted-and confirmed by in vitro isothermal titration calorimetry measurements-specific mutations ablated preQ1 binding, but most aberrant binding effects were corrected by compensatory mutations. In contrast, functional analysis in live bacteria using a riboswitch-controlled GFPuv-reporter assay revealed that each mutant had a deleterious effect on gene regulation, even when compensatory changes were included. Our results indicate that effector binding can be uncoupled from gene regulation. We attribute loss of function to defects in a chemical interaction network that links effector binding to distal regions of the fold that support the gene-off RNA conformation. Our findings differentiate effector binding from biological function, which has ramifications for riboswitch characterization. Our results are considered in the context of synthetic ligands and drugs that bind tightly to riboswitches without eliciting a biological response.
Collapse
Affiliation(s)
- Debapratim Dutta
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
| |
Collapse
|
20
|
Xu J, Song Z, Xu X, Ma Z, Bechthold A, Yu X. ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628. Appl Microbiol Biotechnol 2019; 103:7071-7084. [DOI: 10.1007/s00253-019-09959-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
|
21
|
Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nat Commun 2019; 10:1421. [PMID: 30926779 PMCID: PMC6440977 DOI: 10.1038/s41467-019-09338-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Protein kinase A (PKA), the main effector of cAMP in eukaryotes, is a paradigm for the mechanisms of ligand-dependent and allosteric regulation in signalling. Here we report the orthologous but cAMP-independent PKA of the protozoan Trypanosoma and identify 7-deaza-nucleosides as potent activators (EC50 ≥ 6.5 nM) and high affinity ligands (KD ≥ 8 nM). A co-crystal structure of trypanosome PKA with 7-cyano-7-deazainosine and molecular docking show how substitution of key amino acids in both CNB domains of the regulatory subunit and its unique C-terminal αD helix account for this ligand swap between trypanosome PKA and canonical cAMP-dependent PKAs. We propose nucleoside-related endogenous activators of Trypanosoma brucei PKA (TbPKA). The existence of eukaryotic CNB domains not associated with binding of cyclic nucleotides suggests that orphan CNB domains in other eukaryotes may bind undiscovered signalling molecules. Phosphoproteome analysis validates 7-cyano-7-deazainosine as powerful cell-permeable inducer to explore cAMP-independent PKA signalling in medically important neglected pathogens.
Collapse
|
22
|
Yates MK, Seley-Radtke KL. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res 2019; 162:5-21. [PMID: 30529089 PMCID: PMC6349489 DOI: 10.1016/j.antiviral.2018.11.016] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
This is the second of two invited articles reviewing the development of nucleoside analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. As with the first paper, rather than providing a chronological account, we have chosen to examine particular examples of structural modifications made to nucleoside analogues that have proven fruitful as various antiviral, anticancer, and other therapeutics. The first review covered the more common, and in most cases, single modifications to the sugar and base moieties of the nucleoside scaffold. This paper focuses on more recent developments, especially nucleoside analogues that contain more than one modification to the nucleoside scaffold. We hope that these two articles will provide an informative historical perspective of some of the successfully designed analogues, as well as many candidate compounds that encountered obstacles.
Collapse
Affiliation(s)
- Mary K Yates
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
23
|
Shentu XP, Cao ZY, Xiao Y, Tang G, Ochi K, Yu XP. Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PLoS One 2018; 13:e0203006. [PMID: 30161195 PMCID: PMC6117005 DOI: 10.1371/journal.pone.0203006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Toyocamycin is a member of the nucleoside antibiotic family and has been recognized as a promising fungicide for the control of plant diseases. However, low productivity of toyocamycin remains an important bottleneck in its industrial production. Therefore, dramatic improvements of strains for overproduction of toyocamycin are of great interest in applied microbiology research. In this study, we sequentially selected for mutations for multiple drug resistance to promote the overproduction of toyocamycin by Streptomyces diastatochromogenes 1628. The triple mutant strain, SD3145 (str str par), was obtained through sequential screenings. This strain showed an enhanced capacity to produce toyocamycin (1500 mg/L), 24-fold higher than the wild type in GYM liquid medium. This dramatic overproduction was attributed at least partially to the acquisition of an rsmG mutation and increased gene expression of toyA, which encodes a LuxR-family transcriptional regulator for toyocamycin biosynthesis. The expression of toyF and toyG, probably directly involved in toyocamycin biosynthesis, was also enhanced, contributing to toyocamycin overproduction. By addition of a small amount of scandium (ScCl3·6H2O), the mutant strain, SD3145, produced more toyocamycin (2664 mg/L) in TPM medium, which was the highest toyocamycin level produced in shake-flask fermentation by a streptomycete so far. We demonstrated that introduction of combined drug resistance mutations into S. diastatochromogenes 1628 resulted in an obvious increase in the toyocamycin production. The triple mutant strain, SD3145, generated in our study could be useful for improvement of industrial production of toyocamycin.
Collapse
Affiliation(s)
- Xu-Ping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhen-Yan Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yin Xiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gu Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
24
|
Liu Y, Gong R, Liu X, Zhang P, Zhang Q, Cai YS, Deng Z, Winkler M, Wu J, Chen W. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090. Microb Cell Fact 2018; 17:131. [PMID: 30153835 PMCID: PMC6112128 DOI: 10.1186/s12934-018-0978-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Tubercidin (TBN), an adenosine analog with potent antimycobacteria and antitumor bioactivities, highlights an intriguing structure, in which a 7-deazapurine core is linked to the ribose moiety by an N-glycosidic bond. However, the molecular logic underlying the biosynthesis of this antibiotic has remained poorly understood. Results Here, we report the discovery and characterization of the TBN biosynthetic pathway from Streptomyces tubercidicus NBRC 13090 via reconstitution of its production in a heterologous host. We demonstrated that TubE specifically utilizes phosphoribosylpyrophosphate and 7-carboxy-7-deazaguanine for the precise construction of the deazapurine nucleoside scaffold. Moreover, we provided biochemical evidence that TubD functions as an NADPH-dependent reductase, catalyzing irreversible reductive deamination. Finally, we verified that TubG acts as a Nudix hydrolase, preferring Co2+ for the maintenance of maximal activity, and is responsible for the tailoring hydrolysis step leading to TBN. Conclusions These findings lay a foundation for the rational generation of TBN analogs through synthetic biology strategy, and also open the way for the target-directed search of TBN-related antibiotics. Electronic supplementary material The online version of this article (10.1186/s12934-018-0978-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoqin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peichao Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Jianguo Wu
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
25
|
Dutta D, Belashov IA, Wedekind JE. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria. Biochemistry 2018; 57:4620-4628. [PMID: 29897738 DOI: 10.1021/acs.biochem.8b00316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncoding RNAs engage in numerous biological activities including gene regulation. To fully understand RNA function it is necessary to probe biologically relevant conformations in living cells. To address this challenge, we coupled RNA-mediated regulation of the green fluorescent protein (GFP)uv-reporter gene to icSHAPE (in cell Selective 2'-Hydroxyl Acylation analyzed by Primer Extension). Our transcript-specific approach provides sensitive, fluorescence-based readout of the regulatory-RNA status as a means to coordinate chemical modification experiments. We chose a plasmid-based reporter compatible with Escherichia coli to allow use of knockout strains that eliminate endogenous effector biosynthesis. The approach was piloted using the Lactobacillus rhamnosus ( Lrh) preQ1-II riboswitch, which senses the pyrrolopyrimidine metabolite preQ1. Using an E. coli Δ queF strain incapable of preQ1 anabolism, the Lrh riboswitch yielded nearly one log unit of GFPuv-gene repression resulting from exogenously added preQ1. We then subjected cells in gene "on" and "off" states to icSHAPE. The resulting differential analysis indicated reduction in Lrh riboswitch flexibility in the P3 helix of the pseudoknot, which comprises the ribosome-binding site (RBS) paired with the anti-RBS. Such expression platform modulation was not observed by in vitro chemical probing and demonstrates that the crowded cellular environment does not preclude detection of compact and loose RNA-regulatory conformations. Here we describe the design, methods, interpretation, and caveats of Reporter Coupled (ReCo) icSHAPE. We also describe mapping of the differential ReCo-icSHAPE results onto the Lrh riboswitch-preQ1 cocrystal structure. The approach should be readily applicable to functional RNAs triggered by effectors or environmental variations.
Collapse
Affiliation(s)
- Debapratim Dutta
- Department of Biochemistry & Biophysics and Center for RNA Biology , University of Rochester School of Medicine & Dentistry , Rochester , New York 14642 , United States
| | - Ivan A Belashov
- Department of Biochemistry & Biophysics and Center for RNA Biology , University of Rochester School of Medicine & Dentistry , Rochester , New York 14642 , United States
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology , University of Rochester School of Medicine & Dentistry , Rochester , New York 14642 , United States
| |
Collapse
|
26
|
Wilcoxen J, Bruender NA, Bandarian V, Britt RD. A Radical Intermediate in Bacillus subtilis QueE during Turnover with the Substrate Analogue 6-Carboxypterin. J Am Chem Soc 2018; 140:1753-1759. [PMID: 29303575 DOI: 10.1021/jacs.7b10860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
7-Carboxy-7-deazaguanine (CDG) synthase (QueE), a member of the radical S-deoxyadenosyl-l-methionine (SAM) superfamily of enzymes, catalyzes a radical-mediated ring rearrangement required to convert 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) into CDG, forming the 7-dezapurine precursor to all pyrrolopyrimidine metabolites. Members of the radical SAM superfamily bind SAM to a [4Fe-4S] cluster, leveraging the reductive cleavage of SAM by the cluster to produce a highly reactive 5'-deoxyadenosyl radical which initiates chemistry by H atom abstraction from the substrate. QueE has recently been shown to use 6-carboxypterin (6-CP) as an alternative substrate, forming 6-deoxyadenosylpterin as the product. This reaction has been proposed to occur by radical addition between 5'-dAdo· and 6-CP, which upon oxidative decarboxylation yields the modified pterin. Here, we present spectroscopic evidence for a 6-CP-dAdo radical. The structure of this intermediate is determined by characterizing its electronic structure by continuous wave and pulse electron paramagnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Jarett Wilcoxen
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Nathan A Bruender
- Department of Chemistry and Biochemistry, St. Cloud State University , St. Cloud, Minnesota 56301, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| |
Collapse
|
27
|
Bartholomae M, Buivydas A, Viel JH, Montalbán-López M, Kuipers OP. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol Microbiol 2017; 106:186-206. [DOI: 10.1111/mmi.13764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Andrius Buivydas
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology; University of Granada, C. Fuentenueva s/n; 18071 Granada Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| |
Collapse
|
28
|
Mechanism and catalytic strategy of the prokaryotic-specific GTP cyclohydrolase-IB. Biochem J 2017; 474:1017-1039. [PMID: 28126741 DOI: 10.1042/bcj20161025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 12/30/2022]
Abstract
Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.
Collapse
|
29
|
Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces. World J Microbiol Biotechnol 2017; 33:66. [PMID: 28260195 DOI: 10.1007/s11274-017-2233-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.
Collapse
|
30
|
Zallot R, Yuan Y, de Crécy-Lagard V. The Escherichia coli COG1738 Member YhhQ Is Involved in 7-Cyanodeazaguanine (preQ₀) Transport. Biomolecules 2017; 7:E12. [PMID: 28208705 PMCID: PMC5372724 DOI: 10.3390/biom7010012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
Queuosine (Q) is a complex modification of the wobble base in tRNAs with GUN anticodons. The full Q biosynthesis pathway has been elucidated in Escherichia coli. FolE, QueD, QueE and QueC are involved in the conversion of guanosine triphosphate (GTP) to 7-cyano-7-deazaguanine (preQ₀), an intermediate of increasing interest for its central role in tRNA and DNA modification and secondary metabolism. QueF then reduces preQ₀ to 7-aminomethyl-7-deazaguanine (preQ₁). PreQ₁ is inserted into tRNAs by tRNA guanine(34) transglycosylase (TGT). The inserted base preQ₁ is finally matured to Q by two additional steps involving QueA and QueG or QueH. Most Eubacteria harbor the full set of Q synthesis genes and are predicted to synthesize Q de novo. However, some bacteria only encode enzymes involved in the second half of the pathway downstream of preQ₀ synthesis, including the signature enzyme TGT. Different patterns of distribution of the queF, tgt, queA and queG or queH genes are observed, suggesting preQ₀, preQ₁ or even the queuine base being salvaged in specific organisms. Such salvage pathways require the existence of specific 7-deazapurine transporters that have yet to be identified. The COG1738 family was identified as a candidate for a missing preQ₀/preQ₁ transporter in prokaryotes, by comparative genomics analyses. The existence of Q precursor salvage was confirmed for the first time in bacteria, in vivo, through an indirect assay. The involvement of the COG1738 in salvage of a Q precursor was experimentally validated in Escherichia coli, where it was shown that the COG1738 family member YhhQ is essential for preQ₀ transport.
Collapse
Affiliation(s)
- Rémi Zallot
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
31
|
Xu X, Wang J, Bechthold A, Ma Z, Yu X. Selection of an efficient promoter and its application in toyocamycin production improvement in Streptomyces diastatochromogenes 1628. World J Microbiol Biotechnol 2017; 33:30. [DOI: 10.1007/s11274-016-2194-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022]
|
32
|
Wang X, Zhu W, Liu Y. Tryptophan lyase (NosL): mechanistic insights into amine dehydrogenation and carboxyl fragment migration by QM/MM calculations. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00573c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations suggest two feasible pathways for the breaking of the C–C bond of the substrate. The breaking of the Cα–Cβ bond leads to the final product, whereas the cleavage of the Cα–C bond will terminate in the EPR-trapped radical intermediate.
Collapse
Affiliation(s)
- Xiya Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Wenyou Zhu
- College of Chemistry and Chemical Engineering
- Xuzhou Institute of Technology
- Xuzhou
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
33
|
Hutinet G, Swarjo MA, de Crécy-Lagard V. Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. RNA Biol 2016; 14:1175-1184. [PMID: 27937735 PMCID: PMC5699537 DOI: 10.1080/15476286.2016.1265200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Seven-deazapurine modifications were thought to be highly specific of tRNAs, but have now been discovered in DNA of phages and of phylogenetically diverse bacteria, illustrating the plasticity of these modification pathways. The intermediate 7-cyano-7-deazaguanine (preQ0) is a shared precursor in the pathways leading to the insetion of 7-deazapurine derivatives in both tRNA and DNA. It is also used as an intermediate in the synthesis of secondary metabolites such as toyocamacin. The presence of 7-deazapurine in DNA is proposed to be a protection mechanism against endonucleases. This makes preQ0 a metabolite of underappreaciated but central importance.
Collapse
Affiliation(s)
- Geoffrey Hutinet
- a Department of Microbiology and Cell Science , University of Florida , Gainesville , FL , USA
| | - Manal A Swarjo
- b Department of Chemistry and Biochemistry , San Diego State University , San Diego , CA , USA
| | - Valérie de Crécy-Lagard
- a Department of Microbiology and Cell Science , University of Florida , Gainesville , FL , USA
| |
Collapse
|
34
|
Dowling DP, Miles ZD, Köhrer C, Maiocco SJ, Elliott SJ, Bandarian V, Drennan CL. Molecular basis of cobalamin-dependent RNA modification. Nucleic Acids Res 2016; 44:9965-9976. [PMID: 27638883 PMCID: PMC5175355 DOI: 10.1093/nar/gkw806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 12/22/2022] Open
Abstract
Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis. Our structure of QueG bound to a tRNATyr anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site. We find Q bound directly above the Cbl, consistent with a reaction mechanism that involves the formation of a covalent Cbl-tRNA intermediate. Using protein film electrochemistry, we show that two [4Fe-4S] clusters adjacent to the Cbl have redox potentials in the range expected for Cbl reduction, suggesting how Cbl can be activated for nucleophilic attack on oQ. Together, these structural and electrochemical data inform our understanding of Cbl dependent nucleic acid modification.
Collapse
Affiliation(s)
- Daniel P Dowling
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary D Miles
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
36
|
Nelp MT, Song Y, Wysocki VH, Bandarian V. A Protein-derived Oxygen Is the Source of the Amide Oxygen of Nitrile Hydratases. J Biol Chem 2016; 291:7822-9. [PMID: 26865634 DOI: 10.1074/jbc.m115.704791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/06/2022] Open
Abstract
Nitrile hydratase metalloenzymes are unique and important biocatalysts that are used industrially to produce high value amides from their corresponding nitriles. After more than three decades since their discovery, the mechanism of this class of enzymes is becoming clear with evidence from multiple recent studies that the cysteine-derived sulfenato ligand of the active site metal serves as the nucleophile that initially attacks the nitrile. Herein we describe the first direct evidence from solution phase catalysis that the source of the product carboxamido oxygen is the protein. Using(18)O-labeled water under single turnover conditions and native high resolution protein mass spectrometry, we show that the incorporation of labeled oxygen into both product and protein is turnover-dependent and that only a single oxygen is exchanged into the protein even under multiple turnover conditions, lending significant support to proposals that the post-translationally modified sulfenato group serves as the nucleophile to initiate hydration of nitriles.
Collapse
Affiliation(s)
- Micah T Nelp
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112 and
| | - Yang Song
- the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Vicki H Wysocki
- the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Vahe Bandarian
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112 and
| |
Collapse
|
37
|
Song Y, Nelp M, Bandarian V, Wysocki VH. Refining the Structural Model of a Heterohexameric Protein Complex: Surface Induced Dissociation and Ion Mobility Provide Key Connectivity and Topology Information. ACS CENTRAL SCIENCE 2015; 1:477-487. [PMID: 26744735 PMCID: PMC4690985 DOI: 10.1021/acscentsci.5b00251] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Toyocamycin nitrile hydratase (TNH) is a protein hexamer that catalyzes the hydration of toyocamycin to produce sangivamycin. The structure of hexameric TNH and the arrangement of subunits within the complex, however, have not been solved by NMR or X-ray crystallography. Native mass spectrometry (MS) clearly shows that TNH is composed of two copies each of the α, β, and γ subunits. Previous surface induced dissociation (SID) tandem mass spectrometry on a quadrupole time-of-flight (QTOF) platform suggests that the TNH hexamer is a dimer composed of two αβγ trimers; furthermore, the results suggest that α-β interact most strongly (Blackwell et al. Anal. Chem. 2011, 83, 2862-2865). Here, multiple complementary MS based approaches and homology modeling have been applied to refine the structure of TNH. Solution-phase organic solvent disruption coupled with native MS agrees with the previous SID results. By coupling surface induced dissociation with ion mobility mass spectrometry (SID/IM), further information on the intersubunit contacts and relative interfacial strengths are obtained. The results show that TNH is a dimer of αβγ trimers, that within the trimer the α, β subunits bind most strongly, and that the primary contact between the two trimers is through a γ-γ interface. Collisional cross sections (CCSs) measured from IM experiments are used as constraints for postulating the arrangement of the subunits represented by coarse-grained spheres. Covalent labeling (surface mapping) together with protein complex homology modeling and docking of trimers to form hexamer are utilized with all the above information to propose the likely quaternary structure of TNH, with chemical cross-linking providing cross-links consistent with the proposed structure. The novel feature of this approach is the use of SID-MS with ion mobility to define complete connectivity and relative interfacial areas of a heterohexameric protein complex, providing much more information than is available from solution disruption. That information, when combined with CCS-guided coarse-grained modeling and covalent labeling restraints for homology modeling and trimer-trimer docking, provides atomic models of a previously uncharacterized heterohexameric protein complex.
Collapse
Affiliation(s)
- Yang Song
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Micah
T. Nelp
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United
States
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United
States
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- Address: 260 Biomedical Research
Tower, 460 West 12th Avenue, Columbus, OH 43210, USA. Phone: 614-292-8687. E-mail:
| |
Collapse
|
38
|
Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. J Antibiot (Tokyo) 2015; 69:406-10. [DOI: 10.1038/ja.2015.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 11/08/2022]
|
39
|
Bandarian V, Drennan CL. Radical-mediated ring contraction in the biosynthesis of 7-deazapurines. Curr Opin Struct Biol 2015; 35:116-24. [PMID: 26643180 DOI: 10.1016/j.sbi.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
Pyrrolopyrimidine containing natural products are widely distributed in Nature. The biosynthesis of the 7-deazapurine moiety that is common to all pyrrolopyrimidines entails multiple steps, one of which is a complex radical-mediated ring contraction reaction catalyzed by CDG synthase. Herein we review the biosynthetic pathways of deazapurines, focusing on the biochemical and structural insights into CDG synthase.
Collapse
Affiliation(s)
- Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, United States.
| | - Catherine L Drennan
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
40
|
Huang H, Ren SX, Yang S, Hu HF. Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902-109 and Streptomyces hygroscopicus ATCC29253. Chin J Nat Med 2015; 13:90-8. [PMID: 25769891 DOI: 10.1016/s1875-5364(15)60012-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 12/27/2022]
Abstract
The present study was designed to identify the difference between two rapamycin biosynthetic gene clusters from Streptomyces hygroscopicus ATCC29253 and Actinoplanes sp. N902-109 by comparing the sequence and organization of the gene clusters. The biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus ATCC29253 was reported in 1995. The second rapamycin producer, Actinoplanes sp. N902-109, which was isolated in 1995, could produce more rapamycin than Streptomyces hygroscopicus ATCC29253. The genomic map of Actinoplanes sp. N902-109 has been elucidated in our laboratory. Two gene clusters were compared using the online software anti-SMASH, Glimmer 3.02 and Subsystem Technology (RAST). Comparative analysis revealed that the organization of the multifunctional polyketide synthases (PKS) genes: RapA, RapB, RapC, and NRPS-like RapP were identical in the two clusters. The genes responsible for precursor synthesis and macrolactone modification flanked the PKS core region in N902-109, while the homologs of those genes located downstream of the PKS core region in ATCC29253. Besides, no homolog of the gene encoding a putative type II thioesterase that may serve as a PKS "editing" enzyme accounted for over-production of rapamycin in N902-109, was found in ATCC29253. Furthermore, no homologs of genes rapQ (encoding a methyltransferase) and rapG in N902-109 were found in ATCC29253, however, an extra rapM gene encoding methyltransferase was discovered in ATCC29253. Two rapamycin biosynthetic gene clusters displayed overall high homology as well as some differences in gene organization and functions.
Collapse
Affiliation(s)
- He Huang
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Shuang-Xi Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Feng Hu
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China.
| |
Collapse
|
41
|
Miles ZD, Myers WK, Kincannon WM, Britt RD, Bandarian V. Biochemical and Spectroscopic Studies of Epoxyqueuosine Reductase: A Novel Iron-Sulfur Cluster- and Cobalamin-Containing Protein Involved in the Biosynthesis of Queuosine. Biochemistry 2015; 54:4927-35. [PMID: 26230193 DOI: 10.1021/acs.biochem.5b00335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Queuosine is a hypermodified nucleoside present in the wobble position of tRNAs with a 5'-GUN-3' sequence in their anticodon (His, Asp, Asn, and Tyr). The 7-deazapurine core of the base is synthesized de novo in prokaryotes from guanosine 5'-triphosphate in a series of eight sequential enzymatic transformations, the final three occurring on tRNA. Epoxyqueuosine reductase (QueG) catalyzes the final step in the pathway, which entails the two-electron reduction of epoxyqueuosine to form queuosine. Biochemical analyses reveal that this enzyme requires cobalamin and two [4Fe-4S] clusters for catalysis. Spectroscopic studies show that the cobalamin appears to bind in a base-off conformation, whereby the dimethylbenzimidazole moiety of the cofactor is removed from the coordination sphere of the cobalt but not replaced by an imidazole side chain, which is a hallmark of many cobalamin-dependent enzymes. The bioinformatically identified residues are shown to have a role in modulating the primary coordination sphere of cobalamin. These studies provide the first demonstration of the cofactor requirements for QueG.
Collapse
Affiliation(s)
- Zachary D Miles
- †Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - William K Myers
- ‡Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - William M Kincannon
- †Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - R David Britt
- ‡Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Vahe Bandarian
- †Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
42
|
Nelp MT, Bandarian V. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate. Angew Chem Int Ed Engl 2015; 54:10627-9. [PMID: 26228534 DOI: 10.1002/anie.201504505] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 01/26/2023]
Abstract
The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function.
Collapse
Affiliation(s)
- Micah T Nelp
- Department of Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Street, Biological Sciences West, Tucson, AZ 85721-0088 (USA)
| | - Vahe Bandarian
- Department of Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Street, Biological Sciences West, Tucson, AZ 85721-0088 (USA).
| |
Collapse
|
43
|
Nelp MT, Bandarian V. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Micah T. Nelp
- Department of Chemistry and Biochemistry; University of Arizona; 1041 East Lowell Street Biological Sciences West, Tucson AZ 85721-0088 USA
| | - Vahe Bandarian
- Department of Chemistry and Biochemistry; University of Arizona; 1041 East Lowell Street Biological Sciences West, Tucson AZ 85721-0088 USA
| |
Collapse
|
44
|
Antiproliferative activities of halogenated pyrrolo[3,2-d]pyrimidines. Bioorg Med Chem 2015; 23:4354-4363. [PMID: 26122770 DOI: 10.1016/j.bmc.2015.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022]
Abstract
In vitro evaluation of the halogenated pyrrolo[3,2-d]pyrimidines identified antiproliferative activities in compounds 1 and 2 against four different cancer cell lines. Upon screening of a series of pyrrolo[3,2-d]pyrimidines, the 2,4-Cl compound 1 was found to exhibit antiproliferative activity at low micromolar concentrations. Introduction of iodine at C7 resulted in significant enhancement of potency by reducing the IC50 into sub-micromolar levels, thereby suggesting the importance of a halogen at C7. This finding was further supported by an increased antiproliferative effect for 4 as compared to 3. Cell-cycle and apoptosis studies conducted on the two potent compounds 1 and 2 showed differences in their cytotoxic mechanisms in triple negative breast cancer MDA-MB-231 cells, wherein compound 1 induced cells to accumulate at the G2/M stage with little evidence of apoptotic death. In contrast, compound 2 robustly induced apoptosis with concomitant G2/M cell cycle arrest in this cell model.
Collapse
|
45
|
Tao L, Ma Z, Xu X, Bechthold A, Bian Y, Shentu X, Yu X. EngineeringStreptomyces diastatochromogenes1628 to increase the production of toyocamycin. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Libin Tao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Xianhao Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Andreas Bechthold
- Pharmazeutische Biologie und Biotechnologie; Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg im Breisgau; Freiburg Germany
| | - Yalin Bian
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine; College of Life Sciences; China Jiliang University; Hangzhou Zhejiang Province China
| |
Collapse
|
46
|
Zhu W, Liu Y. Ring Contraction Catalyzed by the Metal-Dependent Radical SAM Enzyme: 7-Carboxy-7-deazaguanine Synthase from B. multivorans. Theoretical Insights into the Reaction Mechanism and the Influence of Metal Ions. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wenyou Zhu
- Key
Laboratory of Colloid and Interface Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- Key
Laboratory of Colloid and Interface Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Key
Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau
Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| |
Collapse
|
47
|
Characterization of biosynthetic genes of ascamycin/dealanylascamycin featuring a 5'-O-sulfonamide moiety in Streptomyces sp. JCM9888. PLoS One 2014; 9:e114722. [PMID: 25479601 PMCID: PMC4257720 DOI: 10.1371/journal.pone.0114722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
Ascamycin (ACM) and dealanylascamycin (DACM) are nucleoside antibiotics elaborated by Streptomyces sp. JCM9888. The later shows broad spectrum inhibition activity to various gram-positive and gram-negative bacteria, eukaryotic Trypanosoma and is also toxic to mice, while ascamycin is active against very limited microorganisms, such as Xanthomonas. Both compounds share an unusual 5′-O-sulfonamide moiety which is attached to an adenosine nucleoside. In this paper, we first report on the 30 kb gene cluster (23 genes, acmA to acmW) involved in the biosynthesis of these two antibiotics and a biosynthetic assembly line was proposed. Of them, six genes (AcmABGKIW) are hypothetical genes involved in 5′-O-sulfonamide formation. Two flavin adenine dinucleotide (FAD)-dependent chlorinase genes acmX and acmY were characterized which are significantly remote from acmA-W and postulated to be required for adenine C2-halogenation. Notably gene disruption of acmE resulted in a mutant which could only produce dealanylascamycin but was blocked in its ability to biosynthesize ascamycin, revealing its key role of conversion of dealanylascamycin to ascamycin.
Collapse
|
48
|
Lim FPL, Dolzhenko AV. 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur J Med Chem 2014; 85:371-90. [DOI: 10.1016/j.ejmech.2014.07.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/11/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
|
49
|
Zhang P, Wu H, Chen XL, Deng Z, Bai L, Pang X. Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. Microbiology (Reading) 2014; 160:1379-1392. [DOI: 10.1099/mic.0.076901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclothiazomycin is a member of the thiopeptide antibiotics, which are usually complicated derivatives of ribosomally synthesized peptides. A gene cluster containing 12 ORFs identical to the clt cluster encoding cyclothiazomycin from Streptomyces hygroscopicus 10-22 was revealed by genome sequencing in S. hygroscopicus 5008. Genes SHJG8833 and SHJG8837 of the cluster and flanking gene SHJG8838 were predicted to encode regulatory proteins from different families. In this study, we showed that the newly identified cluster is functional and we investigated the roles of these regulatory genes in the regulation of cyclothiazomycin biosynthesis. We determined that SHJG8833, but not SHJG8837 or SHJG8838, is critical for cyclothiazomycin biosynthesis. The transcriptional start point of SHJG8833 was located to a thymidine 54 nt upstream of the start codon. Inactivation of SHJG8833 abrogated the production of cyclothiazomycin, and synthesis could be restored by reintroducing SHJG8833 into the mutant strain. Gene expression analyses indicated that SHJG8833 regulates a consecutive set of seven genes from SHJG8826 to SHJG8832, whose products are predicted to be involved in different steps in the construction of the main framework of cyclothiazomycin. Transcriptional analysis indicated that these seven genes may form two operons, SHJG8826–27 and SHJG8828–32. Gel-shift analysis demonstrated that the DNA-binding domain of SHJG8833 binds the promoters of SHJG8826 and SHJG8828 and sequences internal to SHJG8826 and SHJG8829, and a conserved binding sequence was deduced. These results indicate that SHJG8833 is a positive regulator that controls cyclothiazomycin biosynthesis by activating structural genes in the clt cluster.
Collapse
Affiliation(s)
- Peipei Zhang
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, PR China
| | - Xiu-Lan Chen
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Zixin Deng
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Linquan Bai
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiuhua Pang
- Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| |
Collapse
|
50
|
Nelp MT, Astashkin AV, Breci LA, McCarty RM, Bandarian V. The alpha subunit of nitrile hydratase is sufficient for catalytic activity and post-translational modification. Biochemistry 2014; 53:3990-4. [PMID: 24914472 PMCID: PMC4075990 DOI: 10.1021/bi500260j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Nitrile hydratases (NHases) possess
a mononuclear iron or cobalt
cofactor whose coordination environment includes rare post-translationally
oxidized cysteine sulfenic and sulfinic acid ligands. This cofactor
is located in the α-subunit at the interfacial active site of
the heterodimeric enzyme. Unlike canonical NHases, toyocamycin nitrile
hydratase (TNHase) from Streptomyces rimosus is a
unique three-subunit member of this family involved in the biosynthesis
of pyrrolopyrimidine antibiotics. The subunits of TNHase are homologous
to the α- and β-subunits of prototypical NHases. Herein
we report the expression, purification, and characterization of the
α-subunit of TNHase. The UV–visible, EPR, and mass spectra
of the α-subunit TNHase provide evidence that this subunit alone
is capable of synthesizing the active site complex with full post-translational
modifications. Remarkably, the isolated post-translationally modified α-subunit
is also catalytically active with the natural substrate, toyocamycin,
as well as the niacin precursor 3-cyanopyridine. Comparisons of the
steady state kinetic parameters of the single subunit variant to the
heterotrimeric protein clearly show that the additional subunits impart
substrate specificity and catalytic efficiency. We conclude that the
α-subunit is the minimal sequence needed for nitrile hydration
providing a simplified scaffold to study the mechanism and post-translational
modification of this important class of catalysts.
Collapse
Affiliation(s)
- Micah T Nelp
- Department of Chemistry and Biochemistry, University of Arizona , 1041 E. Lowell Street, Biological Sciences West 540, Tucson, Arizona 85721-0088, United States
| | | | | | | | | |
Collapse
|