1
|
Akintubosun MO, Higgins MA. A myo-inositol dehydrogenase involved in aminocyclitol biosynthesis of hygromycin A. Beilstein J Org Chem 2024; 20:589-596. [PMID: 38505238 PMCID: PMC10949010 DOI: 10.3762/bjoc.20.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Hygromycin A is a broad-spectrum antibiotic that contains a furanose, cinnamic acid, and aminocyclitol moieties. The biosynthesis of the aminocyclitol has been proposed to proceed through six enzymatic steps from glucose 6-phosphate through myo-inositol to the final methylenedioxy-containing aminocyclitol. Although there is some in vivo evidence for this proposed pathway, biochemical support for the individual enzyme activities is lacking. In this study, we verify the activity for one enzyme in this pathway. We show that Hyg17 is a myo-inositol dehydrogenase that has a unique substrate scope when compared to other myo-inositol dehydrogenases. Furthermore, we analyze sequences from the protein family containing Hyg17 and discuss genome mining strategies that target this protein family to identify biosynthetic clusters for natural product discovery.
Collapse
Affiliation(s)
- Michael O Akintubosun
- Department of Biological Sciences, The University of Alabama, 3314 Science and Engineering Complex, Tuscaloosa, AL 35487, USA
| | - Melanie A Higgins
- Department of Biological Sciences, The University of Alabama, 3314 Science and Engineering Complex, Tuscaloosa, AL 35487, USA
| |
Collapse
|
2
|
Chi C, Xu R, Chen Q, Zhang X, Shi X, Jin H, Yin F, Jia H, Zhang L, Yang D, Ju J, Li Q, Ma M. Structural Insight into a Metal-Dependent Mutase Revealing an Arginine Residue-Covalently Mediated Interconversion between Nucleotide-Based Pyranose and Furanose. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Run Xu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qianqian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fuling Yin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
3
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Ding X, Yuan T, Chen W, Wang X, Chu Y, Liu X, Hu Y, Hu L. Hygromycin A derivatives isolated from Streptomyces sp. PC-22 in the rhizosphere soil of Pulsatilla chinensis. J Antibiot (Tokyo) 2022; 75:176-180. [DOI: 10.1038/s41429-022-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
|
5
|
A Chemical Counterpunch: Chromobacterium violaceum ATCC 31532 Produces Violacein in Response to Translation-Inhibiting Antibiotics. mBio 2020; 11:mBio.00948-20. [PMID: 32430474 PMCID: PMC7240160 DOI: 10.1128/mbio.00948-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Secondary metabolites play important roles in microbial communities, but their natural functions are often unknown and may be more complex than appreciated. While compounds with antibiotic activity are often assumed to underlie microbial competition, they may alternatively act as signal molecules. In either scenario, microorganisms might evolve responses to sublethal concentrations of these metabolites, either to protect themselves from inhibition or to change certain behaviors in response to the local abundance of another species. Here, we report that violacein production by C. violaceum ATCC 31532 is induced in response to hygromycin A from Streptomyces sp. 2AW, and we show that this response is dependent on inhibition of translational polypeptide elongation and a previously uncharacterized two-component regulatory system. The breadth of the transcriptional response beyond violacein induction suggests a surprisingly complex metabolite-mediated microbe-microbe interaction and supports the hypothesis that antibiotics evolved as signal molecules. These novel insights will inform predictive models of soil community dynamics and the unintended effects of clinical antibiotic administration. Antibiotics produced by bacteria play important roles in microbial interactions and competition Antibiosis can induce resistance mechanisms in target organisms, and at sublethal doses, antibiotics have been shown to globally alter gene expression patterns. Here, we show that hygromycin A from Streptomyces sp. strain 2AW. induces Chromobacterium violaceum ATCC 31532 to produce the purple antibiotic violacein. Sublethal doses of other antibiotics that similarly target the polypeptide elongation step of translation likewise induced violacein production, unlike antibiotics with different targets. C. violaceum biofilm formation and virulence against Drosophila melanogaster were also induced by translation-inhibiting antibiotics, and we identified an antibiotic-induced response (air) two-component regulatory system that is required for these responses. Genetic analyses indicated a connection between the Air system, quorum-dependent signaling, and the negative regulator VioS, leading us to propose a model for induction of violacein production. This work suggests a novel mechanism of interspecies interaction in which a bacterium produces an antibiotic in response to inhibition by another bacterium and supports the role of antibiotics as signal molecules.
Collapse
|
6
|
Qin X, Xie Y, Huang H, Chen Q, Ma J, Li Q, Ju J. Enzymatic Synthesis of GDP-α-l-fucofuranose by MtdL and Hyg20. Org Lett 2018; 20:1015-1018. [PMID: 29380608 DOI: 10.1021/acs.orglett.7b03962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two mutases, MtdL and Hyg20, are reported. Both are able to functionally drive the biosynthesis of GDP-α-l-fucofuranose. Both enzymes catalyze similar functions, catalytically enabling the bidirectional reaction between GDP-β-l-fucopyranose and GDP-α-l-fucofuranose using only divalent cations as cofactors. This realization is but one of a number of important insights into fucofuranose biosynthesis presented herein.
Collapse
Affiliation(s)
- Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Qi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 110039, China
| |
Collapse
|
7
|
Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase. Proc Natl Acad Sci U S A 2017; 114:4948-4953. [PMID: 28438999 DOI: 10.1073/pnas.1620191114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Galactose, a monosaccharide capable of assuming two possible configurational isomers (d-/l-), can exist as a six-membered ring, galactopyranose (Galp), or as a five-membered ring, galactofuranose (Galf). UDP-galactopyranose mutase (UGM) mediates the conversion of pyranose to furanose thereby providing a precursor for d-Galf Moreover, UGM is critical to the virulence of numerous eukaryotic and prokaryotic human pathogens and thus represents an excellent antimicrobial drug target. However, the biosynthetic mechanism and relevant enzymes that drive l-Galf production have not yet been characterized. Herein we report that efforts to decipher the sugar biosynthetic pathway and tailoring steps en route to nucleoside antibiotic A201A led to the discovery of a GDP-l-galactose mutase, MtdL. Systematic inactivation of 18 of the 33 biosynthetic genes in the A201A cluster and elucidation of 10 congeners, coupled with feeding and in vitro biochemical experiments, enabled us to: (i) decipher the unique enzyme, GDP-l-galactose mutase associated with production of two unique d-mannose-derived sugars, and (ii) assign two glycosyltransferases, four methyltransferases, and one desaturase that regiospecifically tailor the A201A scaffold and display relaxed substrate specificities. Taken together, these data provide important insight into the origin of l-Galf-containing natural product biosynthetic pathways with likely ramifications in other organisms and possible antimicrobial drug targeting strategies.
Collapse
|
8
|
Lu W, Kancharla P, Reynolds KA. MarH, a Bifunctional Enzyme Involved in the Condensation and Hydroxylation Steps of the Marineosin Biosynthetic Pathway. Org Lett 2017; 19:1298-1301. [PMID: 28271893 PMCID: PMC8168799 DOI: 10.1021/acs.orglett.7b00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel bifunctional enzyme, MarH, has been identified, and its key functional role in the marineosin biosynthesis successfully probed. MarH catalyzes (1) a condensation step between 4-methoxy-2,2'-bipyrrole-5-carboxaldehyde (MBC) and 2-undecylpyrrole (UP) to form undecylprodiginine (UPG) and (2) hydroxylation of the alkyl chain of UPG to form the (S)-23-hydroxyundecylprodiginine (HUPG), which is essential for MarG catalyzed bicyclization toward the formation of an unusual spiro-tetrahydropyran-aminal ring of marineosins. The final enigmatic steps in the marineosin biosynthesis have now been deciphered.
Collapse
Affiliation(s)
- Wanli Lu
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Kevin A. Reynolds
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
9
|
Characterization of the biosynthetic gene cluster (ata) for the A201A aminonucleoside antibiotic from Saccharothrix mutabilis subsp. capreolus. J Antibiot (Tokyo) 2016; 70:404-413. [PMID: 27731336 DOI: 10.1038/ja.2016.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022]
Abstract
Antibiotic A201A produced by Saccharothrix mutabilis subsp. capreolus NRRL3817 contains an aminonucleoside (N6, N6-dimethyl-3'-amino-3'-deoxyadenosyl), a polyketide (α-methyl-p-coumaric acid) and a disaccharide moiety. The heterologous expression in Streptomyces lividans and Streptomyces coelicolor of a S. mutabilis genomic region of ~34 kb results in the production of A201A, which was identified by microbiological, biochemical and physicochemical approaches, and indicating that this region may contain the entire A201A biosynthetic gene cluster (ata). The analysis of the nucleotide sequence of the fragment reveals the presence of 32 putative open reading frames (ORF), 28 of which according to boundary gene inactivation experiments are likely to be sufficient for A201A biosynthesis. Most of these ORFs could be assigned to the biosynthesis of the antibiotic three structural moieties. Indeed, five ORFs had been previously implicated in the biosynthesis of the aminonucleoside moiety, at least nine were related to the biosynthesis of the polyketide (ata-PKS1-ataPKS4, ata18, ata19, ata2, ata4 and ata7) and six were associated with the synthesis of the disaccharide (ata12, ata13, ata16, ata17, ata5 and ata10) moieties. In addition to AtaP5, three putative methyltransferase genes are also found in the ata cluster (Ata6, Ata8 and Ata11), and no regulatory genes were found.
Collapse
|
10
|
Lahoum A, Aouiche A, Bouras N, Verheecke C, Klenk HP, Sabaou N, Mathieu F. Antifungal activity of a Saharan strain of Actinomadura sp. ACD1 against toxigenic fungi and other pathogenic microorganisms. J Mycol Med 2016; 26:193-200. [DOI: 10.1016/j.mycmed.2016.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/07/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
|
11
|
Novel chemoenzymatic synthesis of an enantiopure allo-inosamine hexaacetate from benzyl azide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Kaminishi T, Schedlbauer A, Fabbretti A, Brandi L, Ochoa-Lizarralde B, He CG, Milón P, Connell SR, Gualerzi CO, Fucini P. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A. Nucleic Acids Res 2015; 43:10015-25. [PMID: 26464437 PMCID: PMC4787777 DOI: 10.1093/nar/gkv975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022] Open
Abstract
Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.
Collapse
MESH Headings
- Binding Sites
- Cinnamates/chemistry
- Cinnamates/metabolism
- Cinnamates/pharmacology
- Crystallography, X-Ray
- Hygromycin B/analogs & derivatives
- Hygromycin B/chemistry
- Hygromycin B/metabolism
- Hygromycin B/pharmacology
- Models, Molecular
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/drug effects
- Protein Synthesis Inhibitors/chemistry
- Protein Synthesis Inhibitors/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Transfer, Amino Acyl/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/drug effects
- Ribosome Subunits, Large, Bacterial/enzymology
- Ribosome Subunits, Large, Bacterial/metabolism
Collapse
Affiliation(s)
- Tatsuya Kaminishi
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Andreas Schedlbauer
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Letizia Brandi
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Borja Ochoa-Lizarralde
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Cheng-Guang He
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Pohl Milón
- School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas - UPC, Lima, L-33, Perú
| | - Sean R Connell
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Paola Fucini
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
13
|
Arenz S, Wilson DN. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Mol Cell 2015; 61:3-14. [PMID: 26585390 DOI: 10.1016/j.molcel.2015.10.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany; Center for integrated Protein Science Munich, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
14
|
Polikanov YS, Starosta AL, Juette MF, Altman RB, Terry DS, Lu W, Burnett BJ, Dinos G, Reynolds KA, Blanchard SC, Steitz TA, Wilson DN. Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. Mol Cell 2015; 58:832-44. [PMID: 26028538 DOI: 10.1016/j.molcel.2015.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/23/2015] [Accepted: 04/07/2015] [Indexed: 01/12/2023]
Abstract
The increase in multi-drug-resistant bacteria is limiting the effectiveness of currently approved antibiotics, leading to a renewed interest in antibiotics with distinct chemical scaffolds. We have solved the structures of the Thermus thermophilus 70S ribosome with A-, P-, and E-site tRNAs bound and in complex with either the aminocyclitol-containing antibiotic hygromycin A (HygA) or the nucleoside antibiotic A201A. Both antibiotics bind at the peptidyl transferase center and sterically occlude the CCA-end of the A-tRNA from entering the A site of the peptidyl transferase center. Single-molecule Förster resonance energy transfer (smFRET) experiments reveal that HygA and A201A specifically interfere with full accommodation of the A-tRNA, leading to the presence of tRNA accommodation intermediates and thereby inhibiting peptide bond formation. Thus, our results provide not only insight into the mechanism of action of HygA and A201A, but also into the fundamental process of tRNA accommodation during protein synthesis.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Agata L Starosta
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Wanli Lu
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | - Benjamin J Burnett
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Kevin A Reynolds
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, New York, NY 10065, USA.
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Daniel N Wilson
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany; Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany.
| |
Collapse
|
15
|
Gurale BP, Shashidhar MS, Gonnade RG. Synthesis of the aminocyclitol units of (-)-hygromycin A and methoxyhygromycin from myo-inositol. J Org Chem 2012; 77:5801-7. [PMID: 22663090 DOI: 10.1021/jo300444b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Concise and efficient syntheses of the aminocyclitol cores of hygromycin A (HMA) and methoxyhygromycin (MHM) have been achieved starting from readily available myo-inositol. Reductive cleavage of myo-inositol orthoformate to the corresponding 1,3-acetal, stereospecific introduction of the amino group via the azide, and resolution of a racemic cyclitol derivative as its diastereomeric mandelate esters are the key steps in the synthesis. Synthesis of the aminocyclitol core of hygromycin A involved chromatography in half of the total number of steps, and the aminocyclitol core of methoxyhygromycin involved only one chromatography.
Collapse
Affiliation(s)
- Bharat P Gurale
- Division of Organic Chemistry, National Chemical Laboratory, Dr. Homibhabha Road, Pune-411 008, India
| | | | | |
Collapse
|