1
|
Ruer PC, Nassar Y, Polák P, Cossy J. Synthesis of Five-Membered exo-Glycals from Six-Membered 2-Iodo- endo-glycals. J Org Chem 2023. [PMID: 37172321 DOI: 10.1021/acs.joc.3c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Five-membered exo-glycals were synthesized from six-membered 2-iodo-endo-glycals by a metal/halogen exchange/ring-opening sequence followed by a cyclization catalyzed by Ag2CO3.
Collapse
Affiliation(s)
- Paul C Ruer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris─PSL, CNRS, 75005 Paris, France
| | - Youssef Nassar
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris─PSL, CNRS, 75005 Paris, France
| | - Peter Polák
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris─PSL, CNRS, 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris─PSL, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Mohideen FI, Kwan DH. A "biphasic glycosyltransferase high-throughput screen" identifies novel anthraquinone glycosides in the diversification of phenolic natural products. J Biol Chem 2023; 299:102931. [PMID: 36682498 PMCID: PMC9950524 DOI: 10.1016/j.jbc.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The sugar moieties of many glycosylated small molecule natural products are essential for their biological activity. Glycosyltransferases (GTs) are enzymes responsible for installing these sugar moieties on a variety of biomolecules. Many GTs active on natural products are inherently substrate promiscuous and thus serve as useful tools in manipulating natural product glycosylation to generate new combinations of sugar units (glycones) and scaffold molecules (aglycones) in a process called glycodiversification. It is important to have an effective screening tool to detect the activity of promiscuous enzymes and their resulting glycoside products. Toward this aim, we developed a strategy for screening natural product GTs in a high-throughput fashion enabled by rapid isolation and detection of chromophoric or fluorescent glycosylated natural products. This involves a solvent extraction step to isolate the resulting polar glycoside product from the unreacted aglycone acceptor substrate and the detection of the formed glycoside by the innate absorbance or fluorescence of the aglycone moiety. Using our approach, we screened a collection of natural product GTs against a panel of precursors to therapeutically important molecules. Three GTs showed previously unreported promiscuity toward anthraquinones resulting in novel ε-rhodomycinone glycosides. Considering the pharmaceutical value of clinically used anthraquinone glycosides that are biosynthesized from an ε-rhodomycinone precursor, and the significance that the sugar moiety has on the biological activity of these drugs, our results are of particular importance toward the glycodiversification of therapeutics in this class. The GTs identified and the novel compounds they produce show promise toward new biocatalytic tools and therapeutics.
Collapse
Affiliation(s)
- F Ifthiha Mohideen
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - David H Kwan
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada; Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada; PROTEO, Quebec Network for Research on Protein Function, Quebec City, Quebec, Canada.
| |
Collapse
|
3
|
Morrison ZA, Eddenden A, Subramanian AS, Howell PL, Nitz M. Termination of Poly- N-acetylglucosamine (PNAG) Polymerization with N-Acetylglucosamine Analogues. ACS Chem Biol 2022; 17:3036-3046. [PMID: 35170962 DOI: 10.1021/acschembio.1c00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacteria require polysaccharides for structure, survival, and virulence. Despite their central role in microbiology, few tools are available to manipulate their production. In E. coli, the glycosyltransferase complex PgaCD produces poly-N-acetylglucosamine (PNAG), an extracellular matrix polysaccharide required for biofilm formation. We report that C6-substituted (H, F, N3, SH, NH2) UDP-GlcNAc substrate analogues are inhibitors of PgaCD. In vitro, the inhibitors cause PNAG chain termination, consistent with the mechanism of PNAG polymerization from the nonreducing terminus. In vivo, expression of the GlcNAc-1-kinase NahK in E. coli provided a non-native GlcNAc salvage pathway that produced the UDP-GlcNAc analogue inhibitors in situ. The 6-fluoro and 6-deoxy derivatives were potent inhibitors of biofilm formation in the transformed strain, providing a tool to manipulate this key exopolysaccharide. Characterization of the UDP-GlcNAc pool and quantification of PNAG generation support PNAG termination as the primary in vivo mechanism of biofilm inhibition by 6-fluoro UDP-GlcNAc.
Collapse
Affiliation(s)
- Zachary A Morrison
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Alexander Eddenden
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Adithya Shankara Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, OntarioM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, OntarioM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
4
|
Synthesis and evaluation of inhibitors of Mycobacterium tuberculosis UGM using bioisosteric replacement. Bioorg Med Chem 2022; 69:116896. [DOI: 10.1016/j.bmc.2022.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
|
5
|
Marino C, Bordoni AV. Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Org Biomol Chem 2022; 20:934-962. [PMID: 35014646 DOI: 10.1039/d1ob02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deoxy sugars represent an important class of carbohydrates, present in a large number of biomolecules involved in multiple biological processes. In various antibiotics, antimicrobials, and therapeutic agents the presence of deoxygenated units has been recognized as responsible for biological roles, such as adhesion or great affinity to receptors, or improved efficacy. The characterization of glycosidases and glycosyltranferases requires substrates, inhibitors and analogous compounds. Deoxygenated sugars are useful for carrying out specific studies for these enzymes. Deoxy sugars, analogs of natural substrates, may behave as substrates or inhibitors, or may not interact with the enzyme. They are also important for glycodiversification studies of bioactive natural products and glycobiological processes, which could contribute to discovering new therapeutic agents with greater efficacy by modification or replacement of sugar units. Deoxygenation of carbohydrates is, thus, of great interest and numerous efforts have been dedicated to the development of methods for the reduction of sugar hydroxyl groups. Given that carbohydrates are the most important renewable chemicals and are more oxidized than fossil raw materials, it is also important to have methods to selectively remove oxygen from certain atoms of these renewable raw materials. The different methods for removal of OH groups of carbohydrates and representative or recent applications of them are presented in this chapter. Glycosidic bonds in general, and 2-deoxy glycosidic linkages, are included. It is not the scope of this survey to cover all reports for each specific technique.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química & Instituto de Nanociencia y Nanotecnología - Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
6
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
7
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Vaugenot J, El Harras A, Tasseau O, Marchal R, Legentil L, Le Guennic B, Benvegnu T, Ferrières V. 6-Deoxy-6-fluoro galactofuranosides: regioselective glycosylation, unexpected reactivity, and anti-leishmanial activity. Org Biomol Chem 2020; 18:1462-1475. [PMID: 32025679 DOI: 10.1039/c9ob02596k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selective glycosylation of the C-6 fluorinated galactofuranosyl acceptor 2 was studied with four galactofuranosyl donors. It was highlighted that this electron-withdrawing atom strongly impacted the behavior of the acceptor, thus leading to unprecedented glycosylation pathways. Competition between expected glycosylation of 2, ring expansion of this acceptor and furanosylation, and intermolecular aglycon transfer was observed. Further investigation of the fluorinated synthetic compounds showed that the presence of fluorine atom contributed to increase the inhibition of the growth of Leishmania tarentolae, a non-pathogenic strain of Leishmania.
Collapse
Affiliation(s)
- Jeane Vaugenot
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Abderrafek El Harras
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Olivier Tasseau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Rémi Marchal
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
9
|
Biosynthesis of Galactan in Mycobacterium tuberculosis as a Viable TB Drug Target? Antibiotics (Basel) 2020; 9:antibiotics9010020. [PMID: 31935842 PMCID: PMC7168186 DOI: 10.3390/antibiotics9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
Collapse
|
10
|
Ortiz CLD, Completo GC, Nacario RC, Nellas RB. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In Silico ADMETox Studies. Sci Rep 2019; 9:17096. [PMID: 31745103 PMCID: PMC6863818 DOI: 10.1038/s41598-019-52764-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
Abstract
A strategy in the discovery of anti-tuberculosis (anti-TB) drug involves targeting the enzymes involved in the biosynthesis of Mycobacterium tuberculosis' (Mtb) cell wall. One of these enzymes is Galactofuranosyltransferase 2 (GlfT2) that catalyzes the elongation of the galactan chain of Mtb cell wall. Studies targeting GlfT2 have so far produced compounds showing minimal inhibitory activity. With the current challenge of designing potential GlfT2 inhibitors with high inhibition activity, computational methods such as molecular docking, receptor-ligand mapping, molecular dynamics, and Three-Dimensional-Quantitative Structure-Activity Relationship (3D-QSAR) were utilized to deduce the interactions of the reported compounds with the target enzyme and enabling the design of more potent GlfT2 inhibitors. Molecular docking studies showed that the synthesized compounds have binding energy values between -3.00 to -6.00 kcal mol-1. Two compounds, #27 and #31, have registered binding energy values of -8.32 ± 0.01, and -8.08 ± 0.01 kcal mol-1, respectively. These compounds were synthesized as UDP-Galactopyranose mutase (UGM) inhibitors and could possibly inhibit GlfT2. Interestingly, the analogs of the known disaccharide substrate, compounds #1-4, have binding energy range of -10.00 to -19.00 kcal mol-1. The synthesized and newly designed compounds were subjected to 3D-QSAR to further design compounds with effective interaction within the active site. Results showed improved binding energy from -6.00 to -8.00 kcal mol-1. A significant increase on the binding affinity was observed when modifying the aglycon part instead of the sugar moiety. Furthermore, these top hit compounds were subjected to in silico ADMETox evaluation. Compounds #31, #70, #71, #72, and #73 were found to pass the ADME evaluation and throughout the screening, only compound #31 passed the predicted toxicity evaluation. This work could pave the way in the design and synthesis of GlfT2 inhibitors through computer-aided drug design and can be used as an initial approach in identifying potential novel GlfT2 inhibitors with promising activity and low toxicity.
Collapse
Affiliation(s)
- Christopher Llynard D Ortiz
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Diliman, Quezon City, 1101, Philippines
| | - Gladys C Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
11
|
Ati J, Colas C, Lafite P, Sweeney RP, Zheng RB, Lowary TL, Daniellou R. The LPG1x family from Leishmania major is constituted of rare eukaryotic galactofuranosyltransferases with unprecedented catalytic properties. Sci Rep 2018; 8:17566. [PMID: 30514885 PMCID: PMC6279836 DOI: 10.1038/s41598-018-35847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Galactofuranosyltransferases are poorly described enzymes despite their crucial role in the virulence and the pathogenicity of numerous microorganisms. These enzymes are considered as potential targets for therapeutic action. In addition to the only well-characterised prokaryotic GlfT2 from Mycobacterium tuberculosis, four putative genes in Leishmania major were previously described as potential galactofuranosyltransferases. In this study, we have cloned, over-expressed, purified and fully determined the kinetic parameters of these four eukaryotic enzymes, thus demonstrating their unique potency in catalysing the transfer of the galactofuranosyl moiety into acceptors. Their individual promiscuity revealed to be different, as some of them could efficiently use NDP-pyranoses as donor substrates in addition to the natural UDP-galactofuranose. Such results pave the way for the development of chemoenzymatic synthesis of furanosyl-containing glycoconjugates as well as the design of improved drugs against leishmaniasis.
Collapse
Affiliation(s)
- Jihen Ati
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP6759, Orléans, Cedex 02, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP6759, Orléans, Cedex 02, France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP6759, Orléans, Cedex 02, France
| | - Ryan P Sweeney
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Ruixiang Blake Zheng
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP6759, Orléans, Cedex 02, France.
| |
Collapse
|
12
|
Frédéric CJM, Cornil J, Vandamme M, Dumitrescu L, Tikad A, Robiette R, Vincent SP. Highly ( Z)-Diastereoselective Synthesis of Trifluoromethylated exo-Glycals via Photoredox and Copper Catalysis. Org Lett 2018; 20:6769-6773. [PMID: 30350649 DOI: 10.1021/acs.orglett.8b02891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly ( Z)-diastereoselective approaches for the synthesis of trifluoromethylated exo-glycals by copper and photoredox catalysis are described. These complementary reactions are applicable to a wide range of methylene exo-glycals generated from the corresponding pyranoses and furanoses and give trifluoromethylated compounds under mild conditions in moderate to good yields. DFT calculations have allowed a rationalization of the observed ( Z)-stereoselectivity.
Collapse
Affiliation(s)
- Christophe J-M Frédéric
- Université de Namur , Laboratoire de Chimie Bio-Organic (CBO) , rue de Bruxelles 61 , 5000 Namur , Belgium
| | - Jérôme Cornil
- Université de Namur , Laboratoire de Chimie Bio-Organic (CBO) , rue de Bruxelles 61 , 5000 Namur , Belgium
| | - Mathilde Vandamme
- Université de Namur , Laboratoire de Chimie Bio-Organic (CBO) , rue de Bruxelles 61 , 5000 Namur , Belgium
| | - Lidia Dumitrescu
- Université de Namur , Laboratoire de Chimie Bio-Organic (CBO) , rue de Bruxelles 61 , 5000 Namur , Belgium
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles, Faculté des Sciences , Université Moulay Ismail , Zitoune, Meknès 1120 , Morocco
| | - Raphaël Robiette
- Université Catholique de Louvain , Institute of Condensed Matter and Nanosciences , Place Louis Pasteur 1 , 1348 Louvain-la-Neuve , Belgium
| | - Stéphane P Vincent
- Université de Namur , Laboratoire de Chimie Bio-Organic (CBO) , rue de Bruxelles 61 , 5000 Namur , Belgium
| |
Collapse
|
13
|
|
14
|
Janoš P, Kozmon S, Tvaroška I, Koča J. How Mycobacterium tuberculosis
Galactofuranosyl Transferase 2 (GlfT2) Generates Alternating β-(1-6) and β-(1-5) Linkages: A QM/MM Molecular Dynamics Study of the Chemical Steps. Chemistry 2018; 24:7051-7059. [DOI: 10.1002/chem.201800558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Pavel Janoš
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Faculty of Science-National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Stanislav Kozmon
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Igor Tvaroška
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Faculty of Science-National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
15
|
Xue X, Zheng RB, Koizumi A, Han L, Klassen JS, Lowary TL. Synthetic polyprenol-pyrophosphate linked oligosaccharides are efficient substrates for mycobacterial galactan biosynthetic enzymes. Org Biomol Chem 2018; 16:1939-1957. [DOI: 10.1039/c8ob00316e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic glycosyl polyprenol phosphates are substrates for enzymes required for cell wall assembly in mycobacteria, including the organism that causes tuberculosis.
Collapse
Affiliation(s)
- Xiaochao Xue
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Ruixiang Blake Zheng
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Akihiko Koizumi
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Ling Han
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
16
|
Martín Del Campo JS, Eckshtain-Levi M, Sobrado P. Identification of eukaryotic UDP-galactopyranose mutase inhibitors using the ThermoFAD assay. Biochem Biophys Res Commun 2017; 493:58-63. [PMID: 28919416 DOI: 10.1016/j.bbrc.2017.09.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 11/26/2022]
Abstract
Aspergillus fumigatus is a human pathogen responsible for deadly infections in immune-compromised patients. A potential strategy for treating A. fumigatus infections is by targeting the biosynthesis of cell wall components, such as galactofuranase, which is absent in humans. Galactofuranose biosynthesis is initiated by the flavoenzyme UDP-galactopyranose mutase (UGM), which converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UGM requires the reduced form of the flavin for activity, which is obtained by reacting with NADPH. We aimed to identify inhibitors of UGM by screening a kinase inhibitor library using ThermoFAD, a flavin fluorescence thermal shift assay. The screening assay identified flavopiridol as a compound that increased the melting temperature of A. fumigatus UGM. Further characterization showed that flavopiridol is a non-competitive inhibitor of UGM and docking studies suggest that it binds in the active site. This compound does not inhibit the prokaryotic UGM from Mycobacteria tuberculosis.
Collapse
Affiliation(s)
| | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
17
|
Martin Del Campo JS, Eckshtain-Levi M, Vogelaar NJ, Sobrado P. Identification of Aspergillus fumigatus UDP-Galactopyranose Mutase Inhibitors. Sci Rep 2017; 7:10836. [PMID: 28883473 PMCID: PMC5589893 DOI: 10.1038/s41598-017-11022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen responsible for deadly, invasive infections in immunocompromised patients. The A. fumigatus cell wall is a complex network of polysaccharides among them galactofuran, which is absent in humans. UDP-galactopyranose mutase (UGM) catalyzes the conversion of UDP-galactofuranose (UDP-Galf) to UDP-galactopyranose (UDP-Galp) and is an important virulence factor. UGM is a flavin-dependent enzyme that requires the reduced flavin for activity; flavin reduction is achieved by reaction with NADPH. The aim of this work was to discover inhibitors of UGM by targeting the NADPH binding site using an ADP-TAMRA probe in a high-throughput screening assay. The flavonoids (2S)-hesperetin and (2S)-naringenin were validated as competitive inhibitors of UGM against NADPH with Ki values of 6 µM and 74 µM, respectively. To gain insight into the active chemical substituents involved in the inhibition of UGM, several derivatives of these inhibitors were studied. The results show that the hydroxyl groups of (2S)-hesperetin are important for inhibition, in particular the phenyl-chroman moiety. Congo red susceptibility assay and growth temperature effects showed that these compounds affected cell wall biosynthesis in A. fumigatus. This work is the first report of inhibition studies on UGM from eukaryotic human pathogens.
Collapse
Affiliation(s)
| | | | - Nancy J Vogelaar
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA. .,Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
18
|
Synthesis and biological properties of galactofuranosyl-containing fluorescent dyes. Bioorg Med Chem Lett 2017; 27:152-155. [PMID: 27956346 DOI: 10.1016/j.bmcl.2016.11.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022]
Abstract
Two fluorescent galactofuranosides were synthesized and their biological activities evaluated on non-infected and Leishmania infected macrophages. Both tagged scaffolds were able to penetrate macrophages. Compared to the activity of the parent octyl galactofuranoside used as a reference, the fluorescein-conjugate showed altered biological properties while the rhodamine 6G one synergistically acted with the lipid chain to significantly increase antiparasitic activity.
Collapse
|
19
|
Wesener DA, Levengood MR, Kiessling LL. Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae. J Biol Chem 2016; 292:2944-2955. [PMID: 28039359 DOI: 10.1074/jbc.m116.759340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis In each species, the galactan is constructed from uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope.
Collapse
Affiliation(s)
| | - Matthew R Levengood
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Laura L Kiessling
- From the Department of Biochemistry and .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
20
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
21
|
Frédéric CJM, Tikad A, Fu J, Pan W, Zheng RB, Koizumi A, Xue X, Lowary TL, Vincent SP. Synthesis of Unprecedented Sulfonylated Phosphono-exo-Glycals Designed as Inhibitors of the Three Mycobacterial Galactofuranose Processing Enzymes. Chemistry 2016; 22:15913-15920. [PMID: 27628709 DOI: 10.1002/chem.201603161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/06/2022]
Abstract
This study reports a new methodology to synthesize exo-glycals bearing both a sulfone and a phosphonate. This synthetic strategy provides a way to generate exo-glycals displaying two electron-withdrawing groups and was applied to eight different carbohydrates from the furanose and pyranose series. The Z/E configurations of these tetrasubstituted enol ethers could be ascertained using NMR spectroscopic techniques. Deprotection of an exo-glycal followed by an UMP (uridine monophosphate) coupling generated two new UDP (uridine diphosphate)-galactofuranose analogues. These two Z/E isomers were evaluated as inhibitors of UGM, GlfT1, and GlfT2, the three mycobacterial galactofuranose processing enzymes. Molecule 46-(E) is the first characterized inhibitor of GlfT1 reported to date and was also found to efficiently inhibit UGM in a reversible manner. Interestingly, GlfT2 showed a better affinity for the (Z) isomer. The three enzymes studied in the present work are not only interesting because, mechanistically, they are still the topic of intense investigations, but also because they constitute very important targets for the development of novel antimycobacterial agents.
Collapse
Affiliation(s)
- Christophe J-M Frédéric
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Abdellatif Tikad
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jian Fu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, 202, Sha-chong South Road, Guiyang, 550002, P. R. China
| | - Ruixiang B Zheng
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Akihiko Koizumi
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Xiaochao Xue
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Stéphane P Vincent
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
22
|
Poulin MB, Lowary TL. Chemical Insight into the Mechanism and Specificity of GlfT2, a Bifunctional Galactofuranosyltransferase from Mycobacteria. J Org Chem 2016; 81:8123-30. [PMID: 27557056 DOI: 10.1021/acs.joc.6b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall structure that is essential to survival. A key component of this structure is a glycoconjugate, the mycolyl-arabinogalactan-peptidoglycan complex, which has at its core a galactan domain composed of galactofuranose (Galf) residues linked to peptidoglycan. Because galactan biosynthesis is essential for mycobacterial viability, compounds that interfere with this process are potential therapeutic agents for treating mycobacterial diseases, including tuberculosis. Galactan biosynthesis in mycobacteria involves two glycosyltransferases, GlfT1 and GlfT2, which have been the subject of increasing interest in recent years. This Synopsis summarizes efforts to characterize the mechanism and specificity of GlfT2, which is responsible for introducing the majority of the Galf residues into mycobacterial galactan.
Collapse
Affiliation(s)
- Myles B Poulin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
23
|
Synthesis and Evaluation of Bicyclo[3.1.0]hexane-Based UDP-Galf Analogues as Inhibitors of the Mycobacterial Galactofuranosyltransferase GlfT2. Molecules 2016; 21:molecules21081053. [PMID: 27529206 PMCID: PMC6272867 DOI: 10.3390/molecules21081053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/17/2022] Open
Abstract
UDP-galactofuranose (UDP-Galf) is the donor substrate for both bifunctional galactofuranosyltransferases, GlfT1 and GlfT2, which are involved in the biosynthesis of mycobacterial galactan. In this paper, a group of UDP-Galf mimics were synthesized via reductive amination of a bicyclo[3.1.0]hexane-based amine by reacting with aromatic, linear, or uridine-containing aldehydes. These compounds were evaluated against GlfT2 using a coupled spectrophotometric assay, and were shown to be weak inhibitors of the enzyme.
Collapse
|
24
|
Abstract
![]()
The cell surface (or cell wall) of bacteria is coated with carbohydrate
(or glycan) structures that play a number of important roles. These
include providing structural integrity, serving as a permeability
barrier to extracellular compounds (e.g., drugs) and modulating the
immune system of the host. Of interest to this Account is the cell
wall structure of mycobacteria. There are a host of different mycobacterial
species, some of which cause human disease. The most well-known is Mycobacterium tuberculosis, the causative agent of tuberculosis.
The mycobacterial cell wall is characterized by the presence of unusual
carbohydrate structures that fulfill the roles described above. However,
in many cases, a molecular-level understanding of how mycobacterial
cell wall glycans mediate these processes is lacking. Inspired
by a seminar he heard as a postdoctoral fellow, the author
began his independent research program with a focus on the chemical
synthesis of mycobacterial glycans. The goals were not only to develop
synthetic approaches to these unique structures but also to provide
molecules that could be used to probe their biological function. Initial
work addressed the preparation of fragments of two key polysaccharides,
arabinogalactan and lipoarabinomannan, which contain large numbers
of sugar residues in the furanose (five-membered) ring form. At the
time these investigations began, there were few methods reported for
the synthesis of oligosaccharides containing furanose rings. Thus,
early in the program, a major area of interest was methodology development,
particularly for the preparation of 1,2-cis-furanosides.
To solve this challenge, a range of conformationally restricted donors
have been developed, both in the author’s group and others,
which provide 1,2-cis-furanosidic linkages with high
stereoselectivity. These investigations were followed by application
of the developed
methods to the synthesis of a range of target molecules containing
arabinofuranose and galactofuranose residues. These molecules have
now found application in biochemical, immunological, and structural
biology investigations, which have shed light on their biosynthesis
and how these motifs are recognized by both the innate and adaptive
immune systems. More recently, attention has been directed toward
the synthesis
of another class of immunologically active mycobacterial cell wall
glycans, the extractable glycolipids. In this case, efforts have been
primarily on phenolic glycolipids, and the compounds synthesized have
been used to evaluate their ability to modulate cytokine release.
Over the past 20 years, the use of chemical synthesis to provide increasingly
complex glycan structures has provided significant benefit to the
burgeoning field of mycobacterial glycobiology. Through the efforts
of groups from around the globe, access to these compounds is now
possible via relatively straightforward methods. As the pool of mycobacterial
glycans continues to grow, so too will our understanding of their
role in disease, which will undoubtedly lead to new strategies to
prevent or treat mycobacterial infections.
Collapse
Affiliation(s)
- Todd L. Lowary
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Gunning−Lemieux
Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
25
|
Abstract
The cell surface (or cell wall) of bacteria is coated with carbohydrate (or glycan) structures that play a number of important roles. These include providing structural integrity, serving as a permeability barrier to extracellular compounds (e.g., drugs) and modulating the immune system of the host. Of interest to this Account is the cell wall structure of mycobacteria. There are a host of different mycobacterial species, some of which cause human disease. The most well-known is Mycobacterium tuberculosis, the causative agent of tuberculosis. The mycobacterial cell wall is characterized by the presence of unusual carbohydrate structures that fulfill the roles described above. However, in many cases, a molecular-level understanding of how mycobacterial cell wall glycans mediate these processes is lacking. Inspired by a seminar he heard as a postdoctoral fellow, the author began his independent research program with a focus on the chemical synthesis of mycobacterial glycans. The goals were not only to develop synthetic approaches to these unique structures but also to provide molecules that could be used to probe their biological function. Initial work addressed the preparation of fragments of two key polysaccharides, arabinogalactan and lipoarabinomannan, which contain large numbers of sugar residues in the furanose (five-membered) ring form. At the time these investigations began, there were few methods reported for the synthesis of oligosaccharides containing furanose rings. Thus, early in the program, a major area of interest was methodology development, particularly for the preparation of 1,2-cis-furanosides. To solve this challenge, a range of conformationally restricted donors have been developed, both in the author's group and others, which provide 1,2-cis-furanosidic linkages with high stereoselectivity. These investigations were followed by application of the developed methods to the synthesis of a range of target molecules containing arabinofuranose and galactofuranose residues. These molecules have now found application in biochemical, immunological, and structural biology investigations, which have shed light on their biosynthesis and how these motifs are recognized by both the innate and adaptive immune systems. More recently, attention has been directed toward the synthesis of another class of immunologically active mycobacterial cell wall glycans, the extractable glycolipids. In this case, efforts have been primarily on phenolic glycolipids, and the compounds synthesized have been used to evaluate their ability to modulate cytokine release. Over the past 20 years, the use of chemical synthesis to provide increasingly complex glycan structures has provided significant benefit to the burgeoning field of mycobacterial glycobiology. Through the efforts of groups from around the globe, access to these compounds is now possible via relatively straightforward methods. As the pool of mycobacterial glycans continues to grow, so too will our understanding of their role in disease, which will undoubtedly lead to new strategies to prevent or treat mycobacterial infections.
Collapse
Affiliation(s)
- Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
Cabezas Y, Legentil L, Robert-Gangneux F, Daligault F, Belaz S, Nugier-Chauvin C, Tranchimand S, Tellier C, Gangneux JP, Ferrières V. Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Org Biomol Chem 2016; 13:8393-404. [PMID: 26130402 DOI: 10.1039/c5ob00563a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although leishmaniasis has been studied for over a century, the fight against cutaneous, mucocutaneous and visceral forms of the disease remains a hot topic. This review refers to the parasitic cell wall and more particularly to the constitutive glycoconjugates. The structures of the main glycolipids and glycoproteins, which are species-dependent, are described. The focus is on the disturbance of the lipid membrane by existing drugs and possible new ones, in order to develop future therapeutic agents.
Collapse
Affiliation(s)
- Yari Cabezas
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chlubnová I, Králová B, Dvořáková H, Spiwok V, Filipp D, Nugier-Chauvin C, Daniellou R, Ferrières V. Biocatalyzed synthesis of difuranosides and their ability to trigger production of TNF-α. Bioorg Med Chem Lett 2016; 26:1550-1553. [PMID: 26876932 DOI: 10.1016/j.bmcl.2016.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
Transglycosylation reactions biocatalyzed by the native arabinofuranosidase Araf51 and using d-galactosyl, d-fucosyl and 6-deoxy-6-fluoro-D-galactosyl derivatives as donors and acceptors provided di-to pentahexofuranosides. The immunostimulatory potency of these compounds, and more especially their ability to induce production of TNF-α, was evaluated on the murine macrophage cell line, Raw 264.7. The results obtained showed concentration-dependent and most importantly, structure-dependent responses. Interestingly, oligoarabinofuranosides belonging to the oligopentafuranoside family displayed concentration-, chain length and aglycon-dependent bioactivities irrespective of their fine chemical variations. Thus, neo-oligofuranosides in D-Galf series, as well as their D-Fucf and 6-fluorinated counterparts are indeed potential sources of immunostimulating agents.
Collapse
Affiliation(s)
- Ilona Chlubnová
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne, France; Department of Biochemistry and Microbiology, Institute of Chemical Technology of Prague, Techniká 3, 166 28 Prague 6, Czech Republic; Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Blanka Králová
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Department of Biochemistry and Microbiology, Institute of Chemical Technology of Prague, Techniká 3, 166 28 Prague 6, Czech Republic
| | - Hana Dvořáková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology of Prague, Techniká 3, 166 28 Prague 6, Czech Republic; Laboratory of NMR Spectroscopy, Institute of Chemical Technology of Prague, Techniká 5, 166 28 Prague 6, Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, Institute of Chemical Technology of Prague, Techniká 3, 166 28 Prague 6, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne, France
| | - Richard Daniellou
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne, France.
| |
Collapse
|
28
|
Díaz-Lobo M, Garcia-Amorós J, Fita I, Velasco D, Guinovart JJ, Ferrer JC. Selective photoregulation of the activity of glycogen synthase and glycogen phosphorylase, two key enzymes in glycogen metabolism. Org Biomol Chem 2015; 13:7282-8. [PMID: 26055498 DOI: 10.1039/c5ob00796h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glycogen is a polymer of α-1,4- and α-1,6-linked glucose units that provides a readily available source of energy in living organisms. Glycogen synthase (GS) and glycogen phosphorylase (GP) are the two enzymes that control, respectively, the synthesis and degradation of this polysaccharide and constitute adequate pharmacological targets to modulate cellular glycogen levels, by means of inhibition of their catalytic activity. Here we report on the synthesis and biological evaluation of a selective inhibitor that consists of an azobenzene moiety glycosidically linked to the anomeric carbon of a glucose molecule. In the ground state, the more stable (E)-isomer of the azobenzene glucoside had a slight inhibitory effect on rat muscle GP (RMGP, IC50 = 4.9 mM) and Escherichia coli GS (EcGS, IC50 = 1.6 mM). After irradiation and subsequent conversion to the (Z)-form, the inhibitory potency of the azobenzene glucoside did not significantly change for RMGP (IC50 = 2.4 mM), while its effect on EcGS increased 50-fold (IC50 = 32 μM). Sucrose synthase 4 from potatoes, a glycosyltransferase that does not operate on glycogen, was only slightly inhibited by the (E)-isomer (IC50 = 0.73 mM). These findings could be rationalized on the basis of kinetic and computer-aided docking analysis, which indicated that both isomers of the azobenzene glucoside mimic the EcGS acceptor substrate and exert their inhibitory effect by binding to the glycogen subsite in the active center of the enzyme. The ability to selectively photoregulate the catalytic activity of key enzymes of glycogen metabolism may represent a new approach for the treatment of glycogen metabolism disorders.
Collapse
Affiliation(s)
- Mireia Díaz-Lobo
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Av. Diagonal 645, E-08028, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Eppe G, El Bkassiny S, Vincent SP. Galactofuranose Biosynthesis: Discovery, Mechanisms and Therapeutic Relevance. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Galactofuranose, the atypical and thermodynamically disfavored form of d-galactose, has in reality a very old history in chemistry and biochemistry. The purpose of this book chapter is to give an overview on the fundamental aspects of the galactofuranose biosynthesis, from the biological occurrence to the search of inhibitors.
Collapse
Affiliation(s)
- Guillaume Eppe
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Sandy El Bkassiny
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Stéphane P. Vincent
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| |
Collapse
|
30
|
Dureau R, Gicquel M, Artur I, Guégan JP, Carboni B, Ferrières V, Berrée F, Legentil L. Synthesis and evaluation of 1,2-trans alkyl galactofuranoside mimetics as mycobacteriostatic agents. Org Biomol Chem 2015; 13:4940-52. [DOI: 10.1039/c5ob00296f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The strong interaction of an octyl chain with M. smegmatis cells was paired with high specificity of the galactofuranose ring against mycobacteria growth.
Collapse
Affiliation(s)
- Rémy Dureau
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| | - Maxime Gicquel
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| | - Isabelle Artur
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| | - Jean-Paul Guégan
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| | - Bertrand Carboni
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS – Université de Rennes1
- 35042 Rennes Cedex
- France
- Université européenne de Bretagne
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| | - Fabienne Berrée
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS – Université de Rennes1
- 35042 Rennes Cedex
- France
- Université européenne de Bretagne
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| |
Collapse
|
31
|
Dumitrescu L, Eppe G, Tikad A, Pan W, El Bkassiny S, Gurcha SS, Ardá A, Jiménez-Barbero J, Besra GS, Vincent SP. Selectfluor and NFSI exo-glycal fluorination strategies applied to the enhancement of the binding affinity of galactofuranosyltransferase GlfT2 inhibitors. Chemistry 2014; 20:15208-15. [PMID: 25251918 DOI: 10.1002/chem.201404180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Two complementary methods for the synthesis of fluorinated exo-glycals have been developed, for which previously no general reaction had been available. First, a Selectfluor-mediated fluorination was optimized after detailed analysis of all the reaction parameters. A dramatic effect of molecular sieves on the course of the reaction was observed. The reaction was generalized with a set of biologically relevant furanosides and pyranosides. A second direct approach involving carbanionic chemistry and the use of N-fluorobenzenesulfonimide (NFSI) was performed and this method gave better diastereoselectivities. Assignment of the Z/E configuration of all the fluorinated exo-glycals was achieved based on the results of HOESY experiments. Furthermore, fluorinated exo-glycal analogues of UDP-galactofuranose were prepared and assayed against GlfT2, which is a key enzyme involved in the cell-wall biosynthesis of major pathogens. The fluorinated exo-glycals proved to be potent inhibitors as compared with a series of C-glycosidic analogues of UDP-Galf, thus demonstrating the double beneficial effect of the exocyclic enol ether functionality and the fluorine atom.
Collapse
Affiliation(s)
- Lidia Dumitrescu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61, B-5000 Namur (Belgium), Fax: (+32) 81-72-45-17
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Martinez Farias MA, Kincaid VA, Annamalai VR, Kiessling LL. Isoprenoid phosphonophosphates as glycosyltransferase acceptor substrates. J Am Chem Soc 2014; 136:8492-5. [PMID: 24866828 PMCID: PMC4073833 DOI: 10.1021/ja500622v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Glycosyltransferases that act on
polyprenol pyrophosphate substrates
are challenging to study because their lipid-linked substrates are
difficult to isolate from natural sources and arduous to synthesize.
To facilitate access to glycosyl acceptors, we assembled phosphonophosphate
analogues and showed these are effective substrate surrogates for
GlfT1, the essential product of mycobacterial gene Rv3782. Under chemically defined conditions, the galactofuranosyltransferase
GlfT1 catalyzes the formation of a tetrasaccharide sequence en route
to assembly of the mycobacterial galactan.
Collapse
Affiliation(s)
- Mario A Martinez Farias
- Department of Chemistry and ‡Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
33
|
Alkyl galactofuranosides strongly interact with Leishmania donovani membrane and provide antileishmanial activity. Antimicrob Agents Chemother 2014; 58:2156-66. [PMID: 24468785 DOI: 10.1128/aac.01350-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the in vitro effects of four alkyl-galactofuranoside derivatives, i.e., octyl-β-D-galactofuranoside (compound 1), 6-amino-β-D-galactofuranoside (compound 2), 6-N-acetamido-β-D-galactofuranoside (compound 3), and 6-azido-β-D-galactofuranoside (compound 4), on Leishmania donovani. Their mechanism of action was explored using electron paramagnetic resonance spectroscopy (EPR) and nuclear magnetic resonance (NMR), and ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Compound 1 showed the most promising effects by inhibiting promastigote growth at a 50% inhibitory concentration (IC50) of 8.96±2.5 μM. All compounds exhibit low toxicity toward human macrophages. Compound 1 had a higher selectivity index than the molecule used for comparison, i.e., miltefosine (159.7 versus 37.9, respectively). EPR showed that compound 1 significantly reduced membrane fluidity compared to control promastigotes and to compound 3. The furanose ring was shown to support this effect, since the isomer galactopyranose had no effect on parasite membrane fluidity or growth. NMR showed a direct interaction of all compounds (greatest with compound 1, followed by compounds 2, 3, and 4, in descending order) with the promastigote membrane and with octyl-galactopyranose and octanol, providing evidence that the n-octyl chain was primarily involved in anchoring with the parasite membrane, followed by the putative crucial role of the furanose ring in the antileishmanial activity. A morphological analysis of compound 1-treated promastigotes by TEM revealed profound alterations in the parasite membrane and organelles, but this was not the case with compound 3. Quantification of annexin V binding by flow cytometry confirmed that compound 1 induced apoptosis in >90% of promastigotes. The effect of compound 1 was also assessed on intramacrophagic amastigotes and showed a reduction in amastigote growth associated with an increase of reactive oxygen species (ROS) production, thus validating its promising effect.
Collapse
|
34
|
Ansiaux C, N'Go I, Vincent SP. Reversible and Efficient Inhibition of UDP-Galactopyranose Mutase by Electrophilic, Constrained and Unsaturated UDP-Galactitol Analogues. Chemistry 2012; 18:14860-6. [DOI: 10.1002/chem.201202302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 11/09/2022]
|
35
|
Rankin GM, Compton BJ, Johnston KA, Hayman CM, Painter GF, Larsen DS. Synthesis and Mass Spectral Characterization of Mycobacterial Phosphatidylinositol and Its Dimannosides. J Org Chem 2012; 77:6743-59. [DOI: 10.1021/jo301189y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Benjamin J. Compton
- Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower
Hutt, New Zealand
| | - Karen A. Johnston
- Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower
Hutt, New Zealand
| | - Colin M. Hayman
- Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower
Hutt, New Zealand
| | - Gavin F. Painter
- Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower
Hutt, New Zealand
| | | |
Collapse
|
36
|
Zou L, Zheng RB, Lowary TL. Studies on the substrate specificity of a GDP-mannose pyrophosphorylase from Salmonella enterica. Beilstein J Org Chem 2012; 8:1219-26. [PMID: 23019451 PMCID: PMC3458741 DOI: 10.3762/bjoc.8.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/29/2012] [Indexed: 12/30/2022] Open
Abstract
A series of methoxy and deoxy derivatives of mannopyranose-1-phosphate (Manp-1P) were chemically synthesized, and their ability to be converted into the corresponding guanosine diphosphate mannopyranose (GDP-Manp) analogues by a pyrophosphorylase (GDP-ManPP) from Salmonella enterica was studied. Evaluation of methoxy analogues demonstrated that GDP-ManPP is intolerant of bulky substituents at the C-2, C-3, and C-4 positions, in turn suggesting that these positions are buried inside the enzyme active site. Additionally, both the 6-methoxy and 6-deoxy Manp-1P derivatives are good or moderate substrates for GDP-ManPP, thus indicating that the C-6 hydroxy group of the Manp-1P substrate is not required for binding to the enzyme. When taken into consideration with other previously published work, it appears that this enzyme has potential utility for the chemoenzymatic synthesis of GDP-Manp analogues, which are useful probes for studying enzymes that employ this sugar nucleotide as a substrate.
Collapse
Affiliation(s)
- Lu Zou
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
37
|
Brown CD, Rusek MS, Kiessling LL. Fluorosugar chain termination agents as probes of the sequence specificity of a carbohydrate polymerase. J Am Chem Soc 2012; 134:6552-5. [PMID: 22458542 PMCID: PMC3338147 DOI: 10.1021/ja301723p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naturally occurring carbohydrate polymers are ubiquitous. They are assembled by polymerizing glycosyltransferases, which can generate polysaccharide products with repeating sequence patterns. The fidelity of enzymes of this class is unknown. We report a method for testing the fidelity of carbohydrate polymerase pattern deposition: we synthesized fluorosugar donors and used them as chain termination agents. The requisite nucleotide fluorosugars could be produced from a single intermediate using the Jacobsen catalyst in a kinetically controlled separation of diastereomers. The resulting fluorosugar donors were used by the galactofuranosyltransferase GlfT2 from Mycobacterium tuberculosis, and the data indicate that this enzyme mediates the cell wall galactan production through a sequence-specific polymerization.
Collapse
Affiliation(s)
- Christopher D Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
38
|
Poulin MB, Zhou R, Lowary TL. Synthetic UDP-galactofuranose analogs reveal critical enzyme-substrate interactions in GlfT2-catalyzed mycobacterial galactan assembly. Org Biomol Chem 2012; 10:4074-87. [PMID: 22499274 DOI: 10.1039/c2ob25159k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterial cell wall galactan, composed of alternating β-(1→5) and β-(1→6) galactofuranosyl residues, is assembled by the action of two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2, which use UDP-galactofuranose (UDP-Galf) as the donor substrate. Kinetic analysis of synthetic UDP-Galf analogs identified critical interactions involved in donor substrate recognition by GlfT2, a processive polymerizing glycosyltransferase. Testing of methylated UDP-Galf analogs showed the donor substrate-binding pocket is sterically crowded. Evaluation of deoxy UDP-Galf analogs revealed that the C-6 hydroxyl group is not essential for substrate activity, and that interactions with the UDP-Galf C-3 hydroxyl group orient the substrate for turnover but appears to play no role in substrate recognition, making the 3-deoxy-analog a moderate competitive inhibitor of the enzyme. Moreover, the addition of a Galf residue deoxygenated at C-5 or C-6, or an l-arabinofuranose residue, to the growing galactan chain resulted in "dead end" reaction products, which no longer act as an acceptor for the enzyme. This finding shows dual recognition of both the terminal C-5 and C-6 hydroxyl groups of the acceptor substrate are required for GlfT2 activity, which is consistent with a recent model developed based upon a crystal structure of the enzyme. These observations provide insight into specific protein-carbohydrate interactions in the GlfT2 active site and may facilitate the design of future inhibitors.
Collapse
Affiliation(s)
- Myles B Poulin
- Alberta Glycomics Centre and Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
39
|
Chlubnova I, Legentil L, Dureau R, Pennec A, Almendros M, Daniellou R, Nugier-Chauvin C, Ferrières V. Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis. Carbohydr Res 2012; 356:44-61. [PMID: 22554502 DOI: 10.1016/j.carres.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/27/2022]
Abstract
There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes.
Collapse
Affiliation(s)
- Ilona Chlubnova
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dureau R, Legentil L, Daniellou R, Ferrières V. Two-step synthesis of per-O-acetylfuranoses: optimization and rationalization. J Org Chem 2012; 77:1301-7. [PMID: 22283704 DOI: 10.1021/jo201913f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A simple two-step procedure yielding peracetylated furanoses directly from free aldoses was implemented. Key steps of the method are (i) highly selective formation of per-O-(tert-butyldimethylsilyl)furanoses and (ii) their clean conversion into acetyl ones without isomerization. This approach was easily applied to galactose and structurally related carbohydrates such as arabinose, fucose, methyl galacturonate and N-acetylgalactosamine to give the corresponding peracetylated targets. The success of this procedure relied on the control of at least three parameters: (i) the tautomeric equilibrium of the starting unprotected oses, (ii) the steric hindrance of both targeted furanoses and silylating agent, and finally, (iii) the reactivity of each soft nucleophile during the protecting group interconversion.
Collapse
Affiliation(s)
- Rémy Dureau
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
| | | | | | | |
Collapse
|
41
|
Sun HG, Ruszczycky MW, Chang WC, Thibodeaux CJ, Liu HW. Nucleophilic participation of reduced flavin coenzyme in mechanism of UDP-galactopyranose mutase. J Biol Chem 2011; 287:4602-8. [PMID: 22187430 DOI: 10.1074/jbc.m111.312538] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactopyranose mutase (UGM) requires reduced FAD (FAD(red)) to catalyze the reversible interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf). Recent structural and mechanistic studies of UGM have provided evidence for the existence of an FAD-Galf/p adduct as an intermediate in the catalytic cycle. These findings are consistent with Lewis acid/base chemistry involving nucleophilic attack by N5 of FAD(red) at C1 of UDP-Galf/p. In this study, we employed a variety of FAD analogues to characterize the role of FAD(red) in the UGM catalytic cycle using positional isotope exchange (PIX) and linear free energy relationship studies. PIX studies indicated that UGM reconstituted with 5-deaza-FAD(red) is unable to catalyze PIX of the bridging C1-OP(β) oxygen of UDP-Galp, suggesting a direct role for the FAD(red) N5 atom in this process. In addition, analysis of kinetic linear free energy relationships of k(cat) versus the nucleophilicity of N5 of FAD(red) gave a slope of ρ = -2.4 ± 0.4. Together, these findings are most consistent with a chemical mechanism for UGM involving an S(N)2-type displacement of UDP from UDP-Galf/p by N5 of FAD(red).
Collapse
Affiliation(s)
- He G Sun
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and Biochemistry and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-0128, USA
| | | | | | | | | |
Collapse
|
42
|
de Talancé VL, Thiery E, Eppe G, Bkassiny SE, Mortier J, Vincent SP. A Simple Synthesis of D-Galactono-1,4-Lactone and Key Building Blocks for the Preparation of Galactofuranosides. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.616273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Vincent Lemau de Talancé
- a University of Namur (FUNDP), Académie Louvain, Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61, B-5000, Namur , Belgium
| | - Emilie Thiery
- a University of Namur (FUNDP), Académie Louvain, Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61, B-5000, Namur , Belgium
| | - Guillaume Eppe
- a University of Namur (FUNDP), Académie Louvain, Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61, B-5000, Namur , Belgium
| | - Sandy El Bkassiny
- a University of Namur (FUNDP), Académie Louvain, Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61, B-5000, Namur , Belgium
| | - Jérémie Mortier
- a University of Namur (FUNDP), Académie Louvain, Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61, B-5000, Namur , Belgium
| | - Stéphane P. Vincent
- a University of Namur (FUNDP), Académie Louvain, Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61, B-5000, Namur , Belgium
| |
Collapse
|
43
|
Legentil L, Audic JL, Daniellou R, Nugier-Chauvin C, Ferrières V. Studies of a furanoside as antimycobacterial agent loaded into a biodegradable PBAT/sodium caseinate support. Carbohydr Res 2011; 346:1541-5. [PMID: 21592464 DOI: 10.1016/j.carres.2011.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
An improved synthesis of n-octyl β-D-galactofuranoside was described using micro-wave activation. The resulting alkyl furanoside showed antibacterial activity against Mycobacterium smegmatis, a non-pathogenic model of Mycobacterium tuberculosis. It was further incorporated into a biodegradable PBAT/sodium caseinate polymer. The resulting biomaterial loaded with 5% of the pharmacophore retained the mycobacteriostatic properties and developed a mycobactericidal activity on contact and at the periphery of the film.
Collapse
Affiliation(s)
- Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France.
| | | | | | | | | |
Collapse
|
44
|
Almendros M, Danalev D, François-Heude M, Loyer P, Legentil L, Nugier-Chauvin C, Daniellou R, Ferrières V. Exploring the synthetic potency of the first furanothioglycoligase through original remote activation. Org Biomol Chem 2011; 9:8371-8. [DOI: 10.1039/c1ob06227a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|