1
|
Peptide-Based HIV Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:15-26. [DOI: 10.1007/978-981-16-8702-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Armani-Tourret M, Zhou Z, Gasser R, Staropoli I, Cantaloube-Ferrieu V, Benureau Y, Garcia-Perez J, Pérez-Olmeda M, Lorin V, Puissant-Lubrano B, Assoumou L, Delaugerre C, Lelièvre JD, Lévy Y, Mouquet H, Martin-Blondel G, Alcami J, Arenzana-Seisdedos F, Izopet J, Colin P, Lagane B. Mechanisms of HIV-1 evasion to the antiviral activity of chemokine CXCL12 indicate potential links with pathogenesis. PLoS Pathog 2021; 17:e1009526. [PMID: 33872329 PMCID: PMC8084328 DOI: 10.1371/journal.ppat.1009526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.
Collapse
Affiliation(s)
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | - Romain Gasser
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | | | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | | | - Mayte Pérez-Olmeda
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, INSERM U1222, Institut Pasteur, Paris, France
| | | | - Lambert Assoumou
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | | | | | - Yves Lévy
- Vaccine Research Institute, INSERM and APHP, Hôpital H. Mondor, Créteil, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, INSERM U1222, Institut Pasteur, Paris, France
| | - Guillaume Martin-Blondel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jacques Izopet
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de virologie, Toulouse, France
| | - Philippe Colin
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Bernard Lagane
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
3
|
Colin P, Zhou Z, Staropoli I, Garcia-Perez J, Gasser R, Armani-Tourret M, Benureau Y, Gonzalez N, Jin J, Connell BJ, Raymond S, Delobel P, Izopet J, Lortat-Jacob H, Alcami J, Arenzana-Seisdedos F, Brelot A, Lagane B. CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathog 2018; 14:e1007432. [PMID: 30521629 PMCID: PMC6283471 DOI: 10.1371/journal.ppat.1007432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023] Open
Abstract
CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.
Collapse
Affiliation(s)
- Philippe Colin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, Paris, France
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | | | - Romain Gasser
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Marie Armani-Tourret
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Jin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bridgette J. Connell
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Stéphanie Raymond
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Pierre Delobel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Hugues Lortat-Jacob
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Anne Brelot
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bernard Lagane
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
4
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
5
|
Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. J Virol 2017; 91:JVI.02440-16. [PMID: 28122982 DOI: 10.1128/jvi.02440-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/19/2017] [Indexed: 01/23/2023] Open
Abstract
Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing antibodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely on their Fc region for optimal efficacy in animal models. Here, we selected 9 monoclonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of the gp120/41 complex and analyzed the potency of the two types of antibodies to bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing activity, most of the selected antibodies recognized and killed cells infected with two laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound poorly to reactivated infected cells from 8 HIV-positive individuals and did not mediate effective ADCC against these cells. The nnAbs also inefficiently recognize cells infected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an epitope-dependent manner without reaching the levels achieved by the most potent bNAbs. Overall, our data reveal important qualitative and quantitative differences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that the breadth of recognition of HIV-1 by nnAbs is narrow.IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs) with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. However, in primate models, the nnAbs do not protect against simian-human immunodeficiency virus (SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in protection from infection remains debatable. In contrast, broadly neutralizing antibodies (bNAbs) neutralize a large array of viral strains and mediate ADCC in cell culture. We analyzed the capacities of 9 nnAbs and 5 bNAbs to eliminate infected cells. We selected 18 HIV-1 strains, including virus reactivated from the reservoir of HIV-positive individuals and transmitted-founder isolates. We report that the nnAbs bind poorly to cells infected with primary HIV-1 strains and do not mediate potent ADCC. Overall, our data show that the breadth of recognition of HIV-1 by nnAbs is narrow.
Collapse
|
6
|
Sulfated Glycans and Related Digestive Enzymes in the Zika Virus Infectivity: Potential Mechanisms of Virus-Host Interaction and Perspectives in Drug Discovery. Interdiscip Perspect Infect Dis 2017; 2017:4894598. [PMID: 28203251 PMCID: PMC5288528 DOI: 10.1155/2017/4894598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022] Open
Abstract
As broadly reported, there is an ongoing Zika virus (ZIKV) outbreak in countries of Latin America. Recent findings have demonstrated that ZIKV causes severe defects on the neural development in fetuses in utero and newborns. Very little is known about the molecular mechanisms involved in the ZIKV infectivity. Potential therapeutic agents are also under investigation. In this report, the possible mechanisms of action played by glycosaminoglycans (GAGs) displayed at the surface proteoglycans of host cells, and likely in charge of interactions with surface proteins of the ZIKV, are highlighted. As is common for the most viruses, these sulfated glycans serve as receptors for virus attachment onto the host cells and consequential entry during infection. The applications of (1) exogenous sulfated glycans of different origins and chemical structures capable of competing with the virus attachment receptors (supposedly GAGs) and (2) GAG-degrading enzymes able to digest the virus attachment receptors on the cells may be therapeutically beneficial as anti-ZIKV. This communication attempts, therefore, to offer some guidance for the future research programs aimed to unveil the molecular mechanisms underlying the ZIKV infectivity and to develop therapeutics capable of decreasing the devastating consequences caused by ZIKV outbreak in the Americas.
Collapse
|
7
|
Connell BJ, Sadir R, Baleux F, Laguri C, Kleman JP, Luo L, Arenzana-Seisdedos F, Lortat-Jacob H. Heparan sulfate differentially controls CXCL12α- and CXCL12γ-mediated cell migration through differential presentation to their receptor CXCR4. Sci Signal 2016; 9:ra107. [PMID: 27803285 DOI: 10.1126/scisignal.aaf1839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemokines stimulate signals in cells by binding to G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors. These chemoattractant cytokines also interact with heparan sulfate (HS), which provides positional information within tissues in the form of haptotactic gradients along which cells can migrate directionally. To investigate the mechanism by which HS modulates chemokine functions, we used the CXC chemokine CXCL12, which exists in different isoforms that all signal through CXCR4 but have distinct HS-binding domains. In experiments with both cell-associated and solubilized CXCR4, we found that although CXCL12γ bound to CXCR4 with a higher affinity than did CXCL12α, CXCL12γ displayed reduced signaling and chemotactic activities. These properties were caused by the specific carboxyl-terminal region of CXCL12γ, which, by interacting with CXCR4 sulfotyrosines, mediated high-affinity, but nonproductive, binding to CXCR4. HS prevented CXCL12γ from interacting with the CXCR4 sulfotyrosines, thereby functionally presenting the chemokine to its receptor such that its activity was similar to that of CXCL12α. HS had no effects on the binding of CXCL12α to CXCR4 or its biological activity, suggesting that this polysaccharide controls CXCL12 in an isoform-specific manner. These data suggest that the HS-dependent regulation of chemokine functions extends beyond the simple process of immobilization and directly modulates receptor ligation and activation.
Collapse
Affiliation(s)
- Bridgette J Connell
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Rabia Sadir
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, UMR CNRS 3523, Paris, France
| | - Cédric Laguri
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Lingjie Luo
- Institut Pasteur, INSERM U1108, Paris, France
| | | | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France.
| |
Collapse
|
8
|
Connell BJ, Chang SY, Prakash E, Yousfi R, Mohan V, Posch W, Wilflingseder D, Moog C, Kodama EN, Clayette P, Lortat-Jacob H. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation. PLoS One 2016; 11:e0165386. [PMID: 27788205 PMCID: PMC5082894 DOI: 10.1371/journal.pone.0165386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1–7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.
Collapse
Affiliation(s)
- Bridgette Janine Connell
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, F-38027 Grenoble, France
| | - Sui-Yuan Chang
- School of Medical Technology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Rahima Yousfi
- Laboratoire de Neurovirologie, Bertin Pharma, CEA, 92265 Fontenay aux Roses, France
| | | | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Christiane Moog
- INSERM U1110, Fédération de médecine translationnelle de Strasbourg (FMTS), Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Eiichi N. Kodama
- Division of Emerging Infectious Diseases, Miyagi Communitiy Health Promotion, Tohoku University School of Medicine, Bldg. 1, Rm. 515, 2–1 Seiryocho, Aoba-ku, Sendai 980–8575, Japan
| | - Pascal Clayette
- Laboratoire de Neurovirologie, Bertin Pharma, CEA, 92265 Fontenay aux Roses, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, F-38027 Grenoble, France
- * E-mail: (HLJ); (EP)
| |
Collapse
|
9
|
CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge. Sci Rep 2016; 6:34829. [PMID: 27721488 PMCID: PMC5056392 DOI: 10.1038/srep34829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The CD4 and the cryptic coreceptor binding sites of the HIV-1 envelope glycoprotein are key to viral attachment and entry. We developed new molecules comprising a CD4 mimetic peptide linked to anionic compounds (mCD4.1-HS12 and mCD4.1-PS1), that block the CD4-gp120 interaction and simultaneously induce the exposure of the cryptic coreceptor binding site, rendering it accessible to HS12- or PS1- mediated inhibition. Using a cynomolgus macaque model of vaginal challenge with SHIV162P3, we report that mCD4.1-PS1, formulated into a hydroxyethyl-cellulose gel provides 83% protection (5/6 animals). We next engineered the mCD4 moiety of the compound, giving rise to mCD4.2 and mCD4.3 that, when conjugated to PS1, inhibited cell-free and cell-associated HIV-1 with particularly low IC50, in the nM to pM range, including some viral strains that were resistant to the parent molecule mCD4.1. These chemically defined molecules, which target major sites of vulnerability of gp120, are stable for at least 48 hours in conditions replicating the vaginal milieu (37 °C, pH 4.5). They efficiently mimic several large gp120 ligands, including CD4, coreceptor or neutralizing antibodies, to which their efficacy compares very favorably, despite a molecular mass reduced to 5500 Da. Together, these results support the development of such molecules as potential microbicides.
Collapse
|
10
|
Benureau Y, Colin P, Staropoli I, Gonzalez N, Garcia-Perez J, Alcami J, Arenzana-Seisdedos F, Lagane B. Guidelines for cloning, expression, purification and functional characterization of primary HIV-1 envelope glycoproteins. J Virol Methods 2016; 236:184-195. [PMID: 27451265 DOI: 10.1016/j.jviromet.2016.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
The trimeric HIV-1 envelope (Env) glycoproteins gp120 and gp41 mediate virus entry into target cells by engaging CD4 and the coreceptors CCR5 or CXCR4 at the cell surface and driving membrane fusion. Receptor/gp120 interactions regulate the virus life cycle, HIV infection transmission and pathogenesis. Env is also the target of neutralizing antibodies. Efforts have thus been made to produce soluble HIV-1 glycoproteins to develop vaccines and study the role and mechanisms of HIV/receptor interactions. However, production and purification of Env glycoproteins and their functional assessment has to cope with multiple obstacles. These include difficulties in amplifying and cloning env sequences and setting up receptor binding assays that are suitable for studies on large collections of glycoproteins, flexible enough to adapt to Env and receptor structural heterogeneities, and allow recapitulating the receptor binding properties of virion-associated Env trimers. Here we identify these difficulties and present protocols to produce primary gp120 and determination of their binding properties to receptors. The receptor binding assays confirmed that the produced glycoproteins are competent for binding CD4 and undergo proper CD4-induced conformational changes required for interaction with CCR5. These assays may help elucidate the role of gp120/receptor interactions in the pathophysiology of HIV infection and develop HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Yann Benureau
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
11
|
Pomin VH. The contribution ofGlycobiologyto the Zika outbreak in the Americas. Glycobiology 2016; 26:680-2. [DOI: 10.1093/glycob/cww057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
13
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
14
|
Tiwari V, Tarbutton MS, Shukla D. Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 2015; 20:2707-27. [PMID: 25665065 PMCID: PMC6272628 DOI: 10.3390/molecules20022707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
A modified form of heparan sulfate (HS) known as 3-O-sulfated heparan sulfate (3-OS HS) generates fusion receptor for herpes simplex virus (HSV) entry and spread. Primary cultures of corneal fibroblasts derived from human eye donors have shown the clinical significance of this receptor during HSV corneal infection. 3-OS HS- is a product of a rare enzymatic modification at C3 position of glucosamine residue which is catalyzed by 3-O-sulfotransferases (3-OSTs) enzymes. From humans to zebrafish, the 3-OST enzymes are highly conserved and widely expressed in cells and tissues. There are multiple forms of 3-OSTs each producing unique subset of sulfated HS making it chemically diverse and heterogeneous. HSV infection of cells or zebrafish can be used as a unique tool to understand the structural-functional activities of HS and 3-OS HS and likewise, the infection can be used as a functional assay to screen phage display libraries for identifying HS and 3-OS HS binding peptides or small molecule inhibitors. Using this approach over 200 unique 12-mer HS and 3-OS HS recognizing peptides were isolated and characterized against HSV corneal infection where 3-OS HS is known to be a key receptor. In this review we discuss emerging role of 3-OS HS based therapeutic strategies in preventing viral infection and tissue damage.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Morgan S Tarbutton
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Microbiology & Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
16
|
Ramana LN, Anand AR, Sethuraman S, Krishnan UM. Targeting strategies for delivery of anti-HIV drugs. J Control Release 2014; 192:271-83. [PMID: 25119469 PMCID: PMC7114626 DOI: 10.1016/j.jconrel.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 02/01/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection remains a significant cause of mortality globally. Though antiretroviral therapy has significantly reduced AIDS-related morbidity and mortality, there are several drawbacks in the current therapy, including toxicity, drug–drug interactions, development of drug resistance, necessity for long-term drug therapy, poor bio-availability and lack of access to tissues and reservoirs. To circumvent these problems, recent anti-HIV therapeutic research has focused on improving drug delivery systems through drug delivery targeted specifically to host cells infected with HIV or could potentially get infected with HIV. In this regard, several surface molecules of both viral and host cell origin have been described in recent years, that would enable targeted drug delivery in HIV infection. In the present review, we provide a comprehensive overview of the need for novel drug delivery systems, and the successes and challenges in the identification of novel viral and host-cell molecules for the targeted drug delivery of anti-HIV drugs. Such targeted anti-retroviral drug delivery approaches could pave the way for effective treatment and eradication of HIV from the body.
Collapse
Affiliation(s)
- Lakshmi Narashimhan Ramana
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | | | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
17
|
Hu H, Huang Y, Mao Y, Yu X, Xu Y, Liu J, Zong C, Boons GJ, Lin C, Xia Y, Zaia J. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra. Mol Cell Proteomics 2014; 13:2490-502. [PMID: 24925905 DOI: 10.1074/mcp.m114.039560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide expressed on cell surfaces, in extracellular matrices and cellular granules in metazoan cells. Through non-covalent binding to growth factors, morphogens, chemokines, and other protein families, HS is involved in all multicellular physiological activities. Its biological activities depend on the fine structures of its protein-binding domains, the determination of which remains a daunting task. Methods have advanced to the point that mass spectra with information-rich product ions may be produced on purified HS saccharides. However, the interpretation of these complex product ion patterns has emerged as the bottleneck to the dissemination of these HS sequencing methods. To solve this problem, we designed HS-SEQ, the first comprehensive algorithm for HS de novo sequencing using high-resolution tandem mass spectra. We tested HS-SEQ using negative electron transfer dissociation (NETD) tandem mass spectra generated from a set of pure synthetic saccharide standards with diverse sulfation patterns. The results showed that HS-SEQ rapidly and accurately determined the correct HS structures from large candidate pools.
Collapse
Affiliation(s)
- Han Hu
- From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Huang
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yang Mao
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Xiang Yu
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yongmei Xu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jian Liu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chengli Zong
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan Boons
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Cheng Lin
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Xia
- ‖Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Joseph Zaia
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA;
| |
Collapse
|
18
|
Besret S, Vicogne J, Dahmani F, Fafeur V, Desmet R, Drobecq H, Romieu A, Melnyk P, Melnyk O. Thiocarbamate-linked polysulfonate-peptide conjugates as selective hepatocyte growth factor receptor binders. Bioconjug Chem 2014; 25:1000-10. [PMID: 24749766 PMCID: PMC4064695 DOI: 10.1021/bc500137j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The capacity of many proteins to interact with natural or synthetic polyanions has been exploited for modulating their biological action. However, the polydispersity of these macromolecular polyanions as well as their poor specificity is a severe limitation to their use as drugs. An emerging trend in this field is the synthesis of homogeneous and well-defined polyanion-peptide conjugates, which act as bivalent ligands, with the peptide part bringing the selectivity of the scaffold. Alternately, this strategy can be used for improving the binding of short peptides to polyanion-binding protein targets. This work describes the design and first synthesis of homogeneous polysulfonate-peptide conjugates using thiocarbamate ligation for binding to the extracellular domain of MET tyrosine kinase receptor for hepatocyte growth factor.
Collapse
|
19
|
Connell BJ, Lortat-Jacob H. Human immunodeficiency virus and heparan sulfate: from attachment to entry inhibition. Front Immunol 2013; 4:385. [PMID: 24312095 PMCID: PMC3834540 DOI: 10.3389/fimmu.2013.00385] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/05/2013] [Indexed: 11/13/2022] Open
Abstract
By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co-receptor usage.
Collapse
Affiliation(s)
- Bridgette J Connell
- University of Grenoble Alpes, Institut de Biologie Structurale , Grenoble , France ; Centre National de la Recherche Scientifique, Institut de Biologie Structurale , Grenoble , France ; Commissariat à l'Énergie Atomique, Direction des Sciences du Vivant, Institut de Biologie Structurale , Grenoble , France
| | | |
Collapse
|
20
|
Structural requirements of glycosaminoglycans for their interaction with HIV-1 envelope glycoprotein gp120. Arch Virol 2013; 159:555-60. [DOI: 10.1007/s00705-013-1831-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 01/09/2023]
|