1
|
Afdilla FD, Hwang W, Yukawa M. An "In Schizo" Evaluation System to Screen for Human Kinesin-5 Inhibitors. Methods Mol Biol 2025; 2862:333-351. [PMID: 39527212 DOI: 10.1007/978-1-0716-4168-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Kinesin-5 motor proteins are essential for mitotic spindle formation and maintenance, ensuring accurate chromosome segregation. Human kinesin-5 is highly expressed in various cancer cells but not in nonproliferative tissues; therefore, it is expected to be an attractive target for cancer chemotherapy, with fewer adverse side effects. Many inhibitors have been developed and subjected to clinical trials; however, they have not yet been commercially distributed because of their poor efficacy and frequent drug resistance. Establishing in vivo assay systems to easily monitor inhibitory activity is necessary and valuable to develop more effective inhibitors. Here, we report a procedure to evaluate the inhibitory activity against human kinesin-5 using a fission yeast-based system called "in schizo". Our approach could further be used to screen for inhibitors against kinesin-5 and other human cancer-related targets.
Collapse
Affiliation(s)
- Fara Difka Afdilla
- Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Woosang Hwang
- Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masashi Yukawa
- Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
2
|
Scribani Rossi C, Eckartt K, Scarchilli E, Angeli S, Price-Whelan A, Di Matteo A, Chevreuil M, Raynal B, Arcovito A, Giacon N, Fiorentino F, Rotili D, Mai A, Espinosa-Urgel M, Cutruzzolà F, Dietrich LEP, Paone A, Paiardini A, Rinaldo S. Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa. Microbiol Res 2023; 277:127498. [PMID: 37776579 DOI: 10.1016/j.micres.2023.127498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.
Collapse
Affiliation(s)
- Chiara Scribani Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Kelly Eckartt
- Department of Biological Sciences, Columbia University, New York, USA
| | - Elisabetta Scarchilli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, I-00185 Rome, Italy
| | - Maelenn Chevreuil
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection. Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, USA
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Papamokos GV, Kaxiras E. How to evict HP1 from H3: Using a complex salt bridge. Biophys Chem 2023; 300:107062. [PMID: 37302360 DOI: 10.1016/j.bpc.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
In an effort to unravel the unknown "binary switch" mechanisms underlying the "histone code" hypothesis of gene silencing and activation, we study the dynamics of Heterochromatin Protein 1 (HP1). We find in the literature that when HP1 is bound to tri-methylated Lysine9 (K9me3) of histone-H3 through an aromatic cage consisting of two tyrosines and one tryptophan, it is evicted upon phosphorylation of Serine10 (S10phos) during mitosis. In this work, the kick-off intermolecular interaction of the eviction process is proposed and described in detail on the basis of quantum mechanical calculations: specifically, an electrostatic interaction competes with the cation-π interaction and draws away K9me3 from the aromatic cage. An arginine, abundant in the histonic environment, can form an intermolecular "complex salt bridge" with S10phos and dislodge HP1. The study attempts to reveal the role of phosphorylation of Ser10 on the H3 tail in atomic detail.
Collapse
Affiliation(s)
- George V Papamokos
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
| |
Collapse
|
4
|
Jones NH, Kapoor TM. Achieving the promise and avoiding the peril of chemical probes using genetics. Curr Opin Struct Biol 2023; 81:102628. [PMID: 37364429 PMCID: PMC10561518 DOI: 10.1016/j.sbi.2023.102628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Chemical probes can be valuable tools for studying protein targets, but addressing concerns about a probe's cellular target or its specificity can be challenging. A reliable strategy is to use a mutation that does not alter a target's function but confers resistance (or sensitizes) to the inhibitor in both cellular and biochemical assays. However, challenges remain in finding such mutations. Here, we discuss structure- and cell-based approaches to identify resistance- and sensitivity-conferring mutations. Further, we describe how resistance-conferring mutations can help with compound design, and the use of saturation mutagenesis to characterize a compound binding site. We highlight how genetic approaches can ensure the proper use of chemical inhibitors to pursue mechanistic studies and test therapeutic hypotheses.
Collapse
Affiliation(s)
- Natalie H Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Yukawa M, Yamauchi T, Kurisawa N, Ahmed S, Kimura KI, Toda T. Fission yeast cells overproducing HSET/KIFC1 provides a useful tool for identification and evaluation of human kinesin-14 inhibitors. Fungal Genet Biol 2018; 116:33-41. [DOI: 10.1016/j.fgb.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
|
6
|
Kapoor TM, Miller RM. Leveraging Chemotype-Specific Resistance for Drug Target Identification and Chemical Biology. Trends Pharmacol Sci 2017; 38:1100-1109. [PMID: 29037508 DOI: 10.1016/j.tips.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/23/2022]
Abstract
Identifying the direct physiological targets of drugs and chemical probes remains challenging. Here we describe how resistance can be used to achieve 'gold-standard' validation of a chemical inhibitor's direct target in human cells. This involves demonstrating that a silent mutation in the target that suppresses inhibitor activity in cell-based assays can also reduce inhibitor potency in biochemical assays. Further, phenotypes due to target inhibition can be identified as those observed in the inhibitor-sensitive cells, across a range of inhibitor concentrations, but not in genetically matched cells with a silent resistance-conferring mutation in the target. We propose that chemotype-specific resistance, which is generally considered to be a limitation of molecularly targeted agents, can be leveraged to deconvolve the mechanism of action of drugs and to properly use chemical probes.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1200 York Ave., New York, NY 10065, USA.
| | - Rand M Miller
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1200 York Ave., New York, NY 10065, USA
| |
Collapse
|
7
|
Pensinger DA, Boldon KM, Chen GY, Vincent WJB, Sherman K, Xiong M, Schaenzer AJ, Forster ER, Coers J, Striker R, Sauer JD. The Listeria monocytogenes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabolism, and Virulence. PLoS Pathog 2016; 12:e1006001. [PMID: 27806131 PMCID: PMC5091766 DOI: 10.1371/journal.ppat.1006001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
Obstacles to bacterial survival and replication in the cytosol of host cells, and the mechanisms used by bacterial pathogens to adapt to this niche are not well understood. Listeria monocytogenes is a well-studied Gram-positive foodborne pathogen that has evolved to invade and replicate within the host cell cytosol; yet the mechanisms by which it senses and responds to stress to survive in the cytosol are largely unknown. To assess the role of the L. monocytogenes penicillin-binding-protein and serine/threonine associated (PASTA) kinase PrkA in stress responses, cytosolic survival and virulence, we constructed a ΔprkA deletion mutant. PrkA was required for resistance to cell wall stress, growth on cytosolic carbon sources, intracellular replication, cytosolic survival, inflammasome avoidance and ultimately virulence in a murine model of Listeriosis. In Bacillus subtilis and Mycobacterium tuberculosis, homologues of PrkA phosphorylate a highly conserved protein of unknown function, YvcK. We found that, similar to PrkA, YvcK is also required for cell wall stress responses, metabolism of glycerol, cytosolic survival, inflammasome avoidance and virulence. We further demonstrate that similar to other organisms, YvcK is directly phosphorylated by PrkA, although the specific site(s) of phosphorylation are not highly conserved. Finally, analysis of phosphoablative and phosphomimetic mutants of YvcK in vitro and in vivo demonstrate that while phosphorylation of YvcK is irrelevant to metabolism and cell wall stress responses, surprisingly, a phosphomimetic, nonreversible negative charge of YvcK is detrimental to cytosolic survival and virulence in vivo. Taken together our data identify two novel virulence factors essential for cytosolic survival and virulence of L. monocytogenes. Furthermore, our data demonstrate that regulation of YvcK phosphorylation is tightly controlled and is critical for virulence. Finally, our data suggest that yet to be identified substrates of PrkA are essential for cytosolic survival and virulence of L. monocytogenes and illustrate the importance of studying protein phosphorylation in the context of infection.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle M. Boldon
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Grischa Y. Chen
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - William J. B. Vincent
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle Sherman
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Meng Xiong
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Emily R. Forster
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Rob Striker
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- W. S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
8
|
Potent, Reversible, and Specific Chemical Inhibitors of Eukaryotic Ribosome Biogenesis. Cell 2016; 167:512-524.e14. [PMID: 27667686 PMCID: PMC5116814 DOI: 10.1016/j.cell.2016.08.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/14/2016] [Accepted: 08/26/2016] [Indexed: 11/21/2022]
Abstract
All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins’ physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin’s role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly. Ribozinoindoles are potent chemical inhibitors of eukaryotic ribosome assembly Activity of four of Mdn1’s six ATPase sites is likely needed for cell growth Ribozinoindoles inhibit recombinant full-length Mdn1’s ATPase activity in vitro Assembly of Nsa1 particles, precursors of the 60S subunit, depends on Mdn1
Collapse
|
9
|
Takemoto A, Kawashima SA, Li JJ, Jeffery L, Yamatsugu K, Elemento O, Nurse P. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis. J Cell Sci 2016; 129:1250-9. [PMID: 26869222 PMCID: PMC4813296 DOI: 10.1242/jcs.181560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 01/29/2023] Open
Abstract
Here, we screened a 10,371 library of diverse molecules using a drug-sensitive fission yeast strain to identify compounds which cause defects in chromosome segregation during mitosis. We identified a phosphorium-ylide-based compound Cutin-1 which inhibits nuclear envelope expansion and nuclear elongation during the closed mitosis of fission yeast, and showed that its target is the β-subunit of fatty acid synthase. A point mutation in the dehydratase domain of Fas1 conferred in vivo and in vitro resistance to Cutin-1. Time-lapse photomicrography showed that the bulk of the chromosomes were only transiently separated during mitosis, and nucleoli separation was defective. Subsequently sister chromatids re-associated leading to chromosomal mis-segregation. These segregation defects were reduced when the nuclear volume was increased and were increased when the nuclear volume was reduced. We propose that there needs to be sufficient nuclear volume to allow the nuclear elongation necessary during a closed mitosis to take place for proper chromosome segregation, and that inhibition of fatty acid synthase compromises nuclear elongation and leads to defects in chromosomal segregation. Summary: Identification of a new fatty acid synthase inhibitor for nuclear division by a chemical genetic screen revealed a link between nuclear envelope expansion and faithful chromosome segregation in a closed mitosis.
Collapse
Affiliation(s)
- Ai Takemoto
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Shigehiro A Kawashima
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY 10065, USA Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Juan-Juan Li
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London NW1 2BE, UK
| | - Linda Jeffery
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London NW1 2BE, UK
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, NY 10065, USA The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London NW1 2BE, UK
| |
Collapse
|
10
|
Lopez MS, Kliegman JI, Shokat KM. The logic and design of analog-sensitive kinases and their small molecule inhibitors. Methods Enzymol 2015; 548:189-213. [PMID: 25399647 DOI: 10.1016/b978-0-12-397918-6.00008-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analog-sensitive AS Kinase technology allows for rapid, reversible, and highly specific inhibition of individual engineered kinases in cells and in mouse models of human diseases. The technique consists of two parts: a kinase containing a space-creating mutation in the ATP-binding pocket and a bulky ATP-competitive small molecule inhibitor that complements the shape of the mutant ATP pocket. This strategy enables dissection of phospho-signaling pathways, elucidation of the physiological function of individual kinases, and characterization of the pharmacology of clinical-kinase inhibitors. Here, we present an overview of AS technology and describe a stepwise approach for generating AS Kinase mutants and identifying appropriate small molecule inhibitors. We also describe commonly encountered technical obstacles and provide strategies to overcome them.
Collapse
Affiliation(s)
- Michael S Lopez
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Joseph I Kliegman
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
11
|
Aoi Y, Kawashima SA, Simanis V, Yamamoto M, Sato M. Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis. Open Biol 2015; 4:rsob.140063. [PMID: 24990387 PMCID: PMC4118601 DOI: 10.1098/rsob.140063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast.
Collapse
Affiliation(s)
- Yuki Aoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM SV2.1830, Station 19, Lausanne 1015, Switzerland
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Laboratory of Cell Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
12
|
Panspecies small-molecule disruptors of heterochromatin-mediated transcriptional gene silencing. Mol Cell Biol 2014; 35:662-74. [PMID: 25487573 PMCID: PMC4301722 DOI: 10.1128/mcb.01102-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.
Collapse
|
13
|
Chang FY, Kawashima SA, Brady SF. Mutations in the proteolipid subunits of the vacuolar H+-ATPase provide resistance to indolotryptoline natural products. Biochemistry 2014; 53:7123-31. [PMID: 25319670 PMCID: PMC4238801 DOI: 10.1021/bi501078j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Indolotryptoline natural products
represent a small family of structurally
unique chromopyrrolic acid-derived antiproliferative agents. Like
many prospective anticancer agents before them, the exploration of
their potential clinical utility has been hindered by the limited
information known about their mechanism of action. To study the mode
of action of two closely related indolotryptolines (BE-54017, cladoniamide
A), we selected for drug resistant mutants using a multidrug resistance-suppressed
(MDR-sup) Schizosaccharomyces pombe strain. As fission
yeast maintains many of the basic cancer-relevant cellular processes
present in human cells, it represents an appealing model to use in
determining the potential molecular target of antiproliferative natural
products through resistant mutant screening. Full genome sequencing
of resistant mutants identified mutations in the c and c′ subunits
of the proteolipid substructure of the vacuolar H+-ATPase
complex (V-ATPase). This collection of resistance-conferring mutations
maps to a site that is distant from the nucleotide-binding sites of
V-ATPase and distinct from sites found to confer resistance to known
V-ATPase inhibitors. Acid vacuole staining, cross-resistance studies,
and direct c/c′ subunit mutagenesis all suggest that indolotryptolines
are likely a structurally novel class of V-ATPase inhibitors. This
work demonstrates the general utility of resistant mutant selection
using MDR-sup S. pombe as a rapid and potentially
systematic approach for studying the modes of action of cytotoxic
natural products.
Collapse
Affiliation(s)
- Fang-Yuan Chang
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
14
|
Aoi Y, Sato M, Sutani T, Shirahige K, Kapoor TM, Kawashima SA. Dissecting the first and the second meiotic divisions using a marker-less drug-hypersensitive fission yeast. Cell Cycle 2014; 13:1327-34. [PMID: 24621506 DOI: 10.4161/cc.28294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Faithful chromosome segregation during meiosis is indispensable to prevent birth defects and infertility. Canonical genetic manipulations have not been very useful for studying meiosis II, since mutations of genes involved in cell cycle regulation or chromosome segregation may affect meiosis I, making interpretations of any defects observed in meiosis II complicated. Here we present a powerful strategy to dissect meiosis I and meiosis II, using chemical inhibitors in genetically tractable model organism fission yeast (Schizosaccharomyces pombe). As various chemical probes are not active in fission yeast, mainly due to an effective multidrug resistance (MDR) response, we have recently developed a drug-hypersensitive MDR-sup strain by suppression of the key genes responsible for MDR response. We further developed the MDR-supML (marker-less) strain by deleting 7 MDR genes without commonly used antibiotic markers. The new strain makes fluorescent tagging and gene deletion much simpler, which enables effective protein visualization in varied genetic backgrounds. Using the MDR-supML strain with chemical inhibitors and live cell fluorescence microscopy, we established cell cycle arrest at meiosis I and meiosis II and examined Aurora-dependent spindle assembly checkpoint (SAC) regulation during meiosis. We found that Aurora B/Ark1 kinase activity is required for recruitment of Bub1, an essential SAC kinase, to unattached kinetochore in prometaphase I and prometaphase II as in mitosis. Thus, Aurora's role in SAC activation is likely conserved in mitosis, meiosis I, and meiosis II. Together, our MDR-supML strain will be useful to dissect complex molecular mechanisms in mitosis and 2 successive meiotic divisions.
Collapse
Affiliation(s)
- Yuki Aoi
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| | - Masamitsu Sato
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering; Waseda University; Shinjuku, Tokyo, Japan
| | - Takashi Sutani
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology; Rockefeller University; New York, NY USA
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Lavogina D, Enkvist E, Viht K, Uri A. Long Residence Times Revealed by Aurora A Kinase-Targeting Fluorescent Probes Derived from Inhibitors MLN8237 and VX-689. Chembiochem 2014; 15:443-50. [DOI: 10.1002/cbic.201300613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 11/10/2022]
|
16
|
Bhatia P, Hachet O, Hersch M, Rincon SA, Berthelot-Grosjean M, Dalessi S, Basterra L, Bergmann S, Paoletti A, Martin SG. Distinct levels in Pom1 gradients limit Cdr2 activity and localization to time and position division. Cell Cycle 2013; 13:538-52. [PMID: 24316795 DOI: 10.4161/cc.27411] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.
Collapse
Affiliation(s)
- Payal Bhatia
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| | - Olivier Hachet
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| | - Micha Hersch
- Department of Medical Genetics; University of Lausanne; Lausanne, Switzerland; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne, Switzerland
| | - Sergio A Rincon
- Institut Curie; CNRS UMR144; Paris, France; CNRS UMR144; Paris, France
| | | | - Sascha Dalessi
- Department of Medical Genetics; University of Lausanne; Lausanne, Switzerland; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne, Switzerland
| | - Laetitia Basterra
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics; University of Lausanne; Lausanne, Switzerland; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne, Switzerland
| | - Anne Paoletti
- Institut Curie; CNRS UMR144; Paris, France; CNRS UMR144; Paris, France
| | - Sophie G Martin
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| |
Collapse
|
17
|
Rheostat-ing mitosis. ACTA ACUST UNITED AC 2013; 20:142-3. [PMID: 23438742 DOI: 10.1016/j.chembiol.2013.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ark1, the unique Aurora kinase in Schizosaccharomyces pombe, regulates multiple aspects of mitosis. In this issue of Chemistry & Biology, Kawashima and colleagues report the discovery and validation of a fungal Ark1 inhibitor, which they employ to evaluate the mitotic outputs of endogenous Ark1 signaling.
Collapse
|