1
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
2
|
Li H, Li W, Song K, Liu Y, Zhao G, Du YL. Nitric oxide synthase-guided genome mining identifies a cytochrome P450 enzyme for olefin nitration in bacterial specialized metabolism. Synth Syst Biotechnol 2024; 9:127-133. [PMID: 38304063 PMCID: PMC10831120 DOI: 10.1016/j.synbio.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
The biological signaling molecule nitric oxide (NO) has recently emerged as a metabolic precursor for the creation of microbial natural products with diversified structures and biological activities. Within the biosynthetic gene clusters (BGCs) of these compounds, genes associated with NO production pathways have been pinpointed. In this study, we employ a nitric oxide synthase (NOS)-guided genome mining strategy for the targeted discovery of NO-derived bacterial natural products and NO-utilizing biocatalysts. We show that a conserved NOS-containing BGC, distributed across several actinobacterial genomes, is responsible for the biosynthesis of lajollamycin, a unique nitro-tetraene-containing antibiotic whose biosynthetic mechanism remains elusive. Through a combination of in vivo and in vitro studies, we unveil the first cytochrome P450 enzyme capable of catalyzing olefin nitration in natural product biosynthesis. These results not only expand the current knowledge about biosynthetic nitration processes but also offer an efficient way for targeted identification of NO-utilizing metabolic pathways and novel nitrating biocatalysts.
Collapse
Affiliation(s)
- Hu Li
- Polytechnic Institute, Zhejiang University, Hangzhou, 310022, China
| | - Wei Li
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kaihui Song
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Guiyun Zhao
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-Ling Du
- Polytechnic Institute, Zhejiang University, Hangzhou, 310022, China
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
3
|
Shi X, Zhao G, Li H, Zhao Z, Li W, Wu M, Du YL. Hydroxytryptophan biosynthesis by a family of heme-dependent enzymes in bacteria. Nat Chem Biol 2023; 19:1415-1422. [PMID: 37653171 DOI: 10.1038/s41589-023-01416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Hydroxytryptophan serves as a chemical precursor to a variety of bioactive specialized metabolites, including the human neurotransmitter serotonin and the hormone melatonin. Although the human and animal routes to hydroxytryptophan have been known for decades, how bacteria catalyze tryptophan indole hydroxylation remains a mystery. Here we report a class of tryptophan hydroxylases that are involved in various bacterial metabolic pathways. These enzymes utilize a histidine-ligated heme cofactor and molecular oxygen or hydrogen peroxide to catalyze regioselective hydroxylation on the tryptophan indole moiety, which is mechanistically distinct from their animal counterparts from the nonheme iron enzyme family. Through genome mining, we also identify members that can hydroxylate the tryptophan indole ring at alternative positions. Our results not only reveal a conserved way to synthesize hydroxytryptophans in bacteria but also provide a valuable enzyme toolbox for biocatalysis. As proof of concept, we assemble a highly efficient pathway for melatonin in a bacterial host.
Collapse
Affiliation(s)
- Xinjie Shi
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guiyun Zhao
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Hu Li
- Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Zhijie Zhao
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yi-Ling Du
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.
| |
Collapse
|
4
|
Shin D, Byun WS, Kang S, Kang I, Bae ES, An JS, Im JH, Park J, Kim E, Ko K, Hwang S, Lee H, Kwon Y, Ko YJ, Hong S, Nam SJ, Kim SB, Fenical W, Yoon YJ, Cho JC, Lee SK, Oh DC. Targeted and Logical Discovery of Piperazic Acid-Bearing Natural Products Based on Genomic and Spectroscopic Signatures. J Am Chem Soc 2023; 145:19676-19690. [PMID: 37642383 DOI: 10.1021/jacs.3c04699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.
Collapse
Affiliation(s)
- Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Honghui Lee
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kwon
- Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- MolGenBio Co., Ltd., Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Chen H, Zhong L, Zhou H, Sun T, Zhong G, Tu Q, Zhuang Y, Bai X, Wang X, Xu J, Xia L, Shen Y, Zhang Y, Bian X. Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β-OH Amino Acid Building Blocks. Angew Chem Int Ed Engl 2022; 61:e202203591. [PMID: 35689369 DOI: 10.1002/anie.202203591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) can incorporate nonproteinogenic amino acids into peptidyl backbones to increase structural diversity. Genome mining of Schlegelella brevitalea led to the identification of a class of linear lipoheptapeptides, glidomides, featuring two unusual residues: threo-β-OH-L-His and threo-β-OH-D-Asp. The β-hydroxylation of Asp and His is catalyzed by the nonheme FeII /α-ketoglutarate-dependent β-hydroxylases GlmD and GlmF, respectively. GlmD independently catalyzes the hydroxylation of L-Asp to primarily produce threo-β-OH-L-Asp on the thiolation domain, and then undergoes epimerization to form threo-β-OH-D-Asp in the final products. However, β-hydroxylation of His requires the concerted action of GlmF and the interface (I) domain, a novel condensation domain family clade. The key sites of I domain for interaction with GlmF were identified, suggesting that the mechanism for hydroxylation of His depends on the collaboration between hydroxylase and NRPS.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Zhuang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaying Xu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuemao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
6
|
Wei ZW, Niikura H, Morgan KD, Vacariu CM, Andersen RJ, Ryan KS. Free Piperazic Acid as a Precursor to Nonribosomal Peptides. J Am Chem Soc 2022; 144:13556-13564. [PMID: 35867963 DOI: 10.1021/jacs.2c03660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Piperazic acid (Piz) is a nonproteinogenic amino acid possessing a rare nitrogen-nitrogen bond. However, little is known about how Piz is incorporated into nonribosomal peptides, including whether adenylation domains specific to Piz exist. In this study, we show that free piperazic acid is directly adenylated and then incorporated into the incarnatapeptin nonribosomal peptides through isotopic incorporation studies. We also use in vitro reconstitution to demonstrate adenylation of free piperazic acid with a three-domain nonribosomal peptide synthetase from the incarnatapeptin gene cluster. We furthermore use bioinformatics and site-directed mutagenesis to outline consensus sequences for the adenylation of piperazic acid, which can now be used for the prediction of gene clusters linked to piperazic-acid-containing peptides. Finally, we discover a fusion protein of a piperazate synthase and an adenylation domain, highlighting the close biosynthetic relationship of piperazic acid formation and its adenylation. Altogether, our work demonstrates the evolution of biosynthetic systems for the activation of free piperazic acid through adenylation, a pathway we suggest is likely to be employed in the majority of pathways to piperazic-acid-containing peptides.
Collapse
|
7
|
Chen H, Zhong L, Zhou H, Sun T, Zhong G, Tu Q, Zhuang Y, Bai X, Wang X, Xu J, Xia L, Shen Y, Zhang Y, Bian X. Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β‐OH Amino Acid Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Yan Zhuang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Jiaying Xu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Science Hunan Normal University Changsha 410081 China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Science Hunan Normal University Changsha 410081 China
| | - Yuemao Shen
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
8
|
Zhang Z, Li P, Wang M, Zhang Y, Wu B, Tao Y, Pan G, Chen Y. ( S)-3-aminopiperidine-2,6-dione is a biosynthetic intermediate of microbial blue pigment indigoidine. MLIFE 2022; 1:146-155. [PMID: 38817675 PMCID: PMC10989907 DOI: 10.1002/mlf2.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2024]
Abstract
The biosynthetic investigations of microbial natural products continuously provide powerful biocatalysts for the preparation of valuable chemicals. Practical methods for preparing (S)-3-aminopiperidine-2,6-dione (2), the pharmacophore of thalidomide (1) and its analog drugs, are highly desired. To develop a biocatalyst for producing (S)-2, we dissected the domain functions of IdgS, which is responsible for the biosynthesis of indigoidine (3), a microbial blue pigment that consists of two 2-like moieties. Our data supported that the L-glutamine tethered to the indigoidine assembly line is first offloaded and cyclized by the thioesterase domain to form (S)-2, which is then dehydrogenated by the oxidation (Ox) domain and finally dimerized to yield 3. Based on this, we developed an IdgS-derived enzyme biocatalyst, IdgS-Ox* R539A, for preparing enantiomerically pure (S)-2. As a proof of concept, one-pot chemoenzymatic synthesis of 1 was achieved by combining the biocatalytic and chemical approaches.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Kong C, Wang Z, Liu G, Chi Z, Ledesma‐Amaro R, Chi Z. Bioproduction of L-piperazic acid in gram scale using Aureobasidium melanogenum. Microb Biotechnol 2021; 14:1722-1729. [PMID: 34081404 PMCID: PMC8313269 DOI: 10.1111/1751-7915.13838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Currently, piperazic acid is chemically synthesized using ecologically unfriendly processes. Microbial synthesis from glucose is an attractive alternative to chemical synthesis. In this study, we report the production of L-piperazic acid via microbial fermentation with the first engineered fungal strain of Aureobasidium melanogenum; this strain was constructed by chassis development, genetic element reconstitution and optimization, synthetic rewiring and constitutive genetic circuit reconstitution, to build a robust L-piperazic acid synthetic cascade. These genetic modifications enable A. melanogenum to directly convert glucose to L-piperazic acid without relying on the use of either chemically synthesized precursors or harsh conditions. This bio-based process overcomes the shortcomings of the conventional synthesis routes. The ultimately engineered strain is a very high-efficient cell factory that can excrete 1.12 ± 0.05 g l-1 of L-piperazic acid after a 120-h 10.0-l fed-batch fermentation; this is the highest titre of L-piperazic acid reported using a microbial cell factory.
Collapse
Affiliation(s)
- Cuncui Kong
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
| | - Zhuangzhuang Wang
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
| | - Guanglei Liu
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
- Pilot National Laboratory for Marine Science and TechnologyNo.1 Wenhai RoadQingdao266237China
| | - Zhenming Chi
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
- Pilot National Laboratory for Marine Science and TechnologyNo.1 Wenhai RoadQingdao266237China
| | | | - Zhe Chi
- College of Marine Life SciencesOcean University of ChinaNo.5 Yushan RoadQingdao266003China
- Pilot National Laboratory for Marine Science and TechnologyNo.1 Wenhai RoadQingdao266237China
| |
Collapse
|
11
|
Xu ZF, Bo ST, Wang MJ, Shi J, Jiao RH, Sun Y, Xu Q, Tan RX, Ge HM. Discovery and biosynthesis of bosamycins from Streptomyces sp. 120454. Chem Sci 2020; 11:9237-9245. [PMID: 34094195 PMCID: PMC8161544 DOI: 10.1039/d0sc03469j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nonribosomal peptides (NRPs) that are synthesized by modular megaenzymes known as nonribosomal peptide synthetases (NRPSs) are a rich source for drug discovery. By targeting an unusual NRPS architecture, we discovered an unusual biosynthetic gene cluster (bsm) from Streptomyces sp. 120454 and identified that it was responsible for the biosynthesis of a series of novel linear peptides, bosamycins. The bsm gene cluster contains a unique monomodular NRPS, BsmF, that contains a cytochrome P450 domain at the N-terminal. BsmF (P450 + A + T) can selectively activate tyrosine with its adenylation (A) domain, load it onto the thiolation (T) domain, and then hydroxylate tyrosine to form 5-OH tyrosine with the P450 domain. We demonstrated a NRPS assembly line for the formation of bosamycins by genetic and biochemical analysis and heterologous expression. Our work reveals a genome mining strategy targeting a unique NRPS domain for the discovery of novel NRPs.
Collapse
Affiliation(s)
- Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Sheng Tao Bo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Mei Jing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
12
|
Zhao G, Guo YY, Yao S, Shi X, Lv L, Du YL. Nitric oxide as a source for bacterial triazole biosynthesis. Nat Commun 2020; 11:1614. [PMID: 32235841 PMCID: PMC7109123 DOI: 10.1038/s41467-020-15420-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
The heterocycle 1,2,3-triazole is among the most versatile chemical scaffolds and has been widely used in diverse fields. However, how nature creates this nitrogen-rich ring system remains unknown. Here, we report the biosynthetic route to the triazole-bearing antimetabolite 8-azaguanine. We reveal that its triazole moiety can be assembled through an enzymatic and non-enzymatic cascade, in which nitric oxide is used as a building block. These results expand our knowledge of the physiological role of nitric oxide synthase in building natural products with a nitrogen-nitrogen bond, and should also inspire the development of synthetic biology approaches for triazole production.
Collapse
Affiliation(s)
- Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuan-Yang Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - Shunyu Yao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xinjie Shi
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
13
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
14
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
15
|
Morgan KD, Andersen RJ, Ryan KS. Piperazic acid-containing natural products: structures and biosynthesis. Nat Prod Rep 2019; 36:1628-1653. [DOI: 10.1039/c8np00076j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piperazic acid is a cyclic hydrazine and a non-proteinogenic amino acid found in diverse non-ribosomal peptide (NRP) and hybrid NRP–polyketide (PK) structures.
Collapse
Affiliation(s)
- Kalindi D. Morgan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
16
|
Avula B, Tekwani BL, Chaurasiya ND, Fasinu P, Dhammika Nanayakkara NP, Bhandara Herath HMT, Wang YH, Bae JY, Khan SI, Elsohly MA, McChesney JD, Zimmerman PA, Khan IA, Walker LA. Metabolism of primaquine in normal human volunteers: investigation of phase I and phase II metabolites from plasma and urine using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Malar J 2018; 17:294. [PMID: 30103751 PMCID: PMC6090659 DOI: 10.1186/s12936-018-2433-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Primaquine (PQ), an 8-aminoquinoline, is the only drug approved by the United States Food and Drug Administration for radical cure and prevention of relapse in Plasmodium vivax infections. Knowledge of the metabolism of PQ is critical for understanding the therapeutic efficacy and hemolytic toxicity of this drug. Recent in vitro studies with primary human hepatocytes have been useful for developing the ultra high-performance liquid chromatography coupled with high-resolution mass spectrometric (UHPLC-QToF-MS) methods for simultaneous determination of PQ and its metabolites generated through phase I and phase II pathways for drug metabolism. METHODS These methods were further optimized and applied for phenotyping PQ metabolites from plasma and urine from healthy human volunteers treated with single 45 mg dose of PQ. Identity of the metabolites was predicted by MetaboLynx using LC-MS/MS fragmentation patterns. Selected metabolites were confirmed with appropriate standards. RESULTS Besides PQ and carboxy PQ (cPQ), the major plasma metabolite, thirty-four additional metabolites were identified in human plasma and urine. Based on these metabolites, PQ is viewed as metabolized in humans via three pathways. Pathway 1 involves direct glucuronide/glucose/carbamate/acetate conjugation of PQ. Pathway 2 involves hydroxylation (likely cytochrome P450-mediated) at different positions on the quinoline ring, with mono-, di-, or even tri-hydroxylations possible, and subsequent glucuronide conjugation of the hydroxylated metabolites. Pathway 3 involves the monoamine oxidase catalyzed oxidative deamination of PQ resulting in formation of PQ-aldehyde, PQ alcohol and cPQ, which are further metabolized through additional phase I hydroxylations and/or phase II glucuronide conjugations. CONCLUSION This approach and these findings augment our understanding and provide comprehensive view of pathways for PQ metabolism in humans. These will advance the clinical studies of PQ metabolism in different populations for different therapeutic regimens and an understanding of the role these play in PQ efficacy and safety outcomes, and their possible relation to metabolizing enzyme polymorphisms.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Narayan D Chaurasiya
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Pius Fasinu
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - H M T Bhandara Herath
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ji-Yeong Bae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Mahmoud A Elsohly
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | | | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University Cleveland, Ohio, 44106, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
17
|
Matsuda K, Tomita T, Shin-ya K, Wakimoto T, Kuzuyama T, Nishiyama M. Discovery of Unprecedented Hydrazine-Forming Machinery in Bacteria. J Am Chem Soc 2018; 140:9083-9086. [DOI: 10.1021/jacs.8b05354] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Matsuda
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
19
|
Schulz A, Hermann L, Freibert SA, Bönig T, Hoffmann T, Riclea R, Dickschat JS, Heider J, Bremer E. Transcriptional regulation of ectoine catabolism in response to multiple metabolic and environmental cues. Environ Microbiol 2017; 19:4599-4619. [PMID: 28892254 DOI: 10.1111/1462-2920.13924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/04/2023]
Abstract
Ectoine and hydroxyectoine are effective microbial osmostress protectants, but can also serve as versatile nutrients for bacteria. We have studied the genetic regulation of ectoine and hydroxyectoine import and catabolism in the marine Roseobacter species Ruegeria pomeroyi and identified three transcriptional regulators involved in these processes: the GabR/MocR-type repressor EnuR, the feast and famine-type regulator AsnC and the two-component system NtrYX. The corresponding genes are widely associated with ectoine and hydroxyectoine uptake and catabolic gene clusters (enuR, asnC), and with microorganisms predicted to consume ectoines (ntrYX). EnuR contains a covalently bound pyridoxal-5'-phosphate as a co-factor and the chemistry underlying the functioning of MocR/GabR-type regulators typically requires a system-specific low molecular mass effector molecule. Through ligand binding studies with purified EnuR, we identified N-(alpha)-L-acetyl-2,4-diaminobutyric acid and L-2,4-diaminobutyric acid as inducers for EnuR that are generated through ectoine catabolism. AsnC/Lrp-type proteins can wrap DNA into nucleosome-like structures, and we found that the asnC gene was essential for use of ectoines as nutrients. Furthermore, we discovered through transposon mutagenesis that the NtrYX two-component system is required for their catabolism. Database searches suggest that our findings have important ramifications for an understanding of the molecular biology of most microbial consumers of ectoines.
Collapse
Affiliation(s)
- Annina Schulz
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Robert-Koch Str. 6, D-35032 Marburg, Germany
| | - Tobias Bönig
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Ramona Riclea
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
20
|
|
21
|
Draft Genome Sequence of Streptomyces sp. SPMA113, a Prajinamide Producer. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01126-16. [PMID: 27738040 PMCID: PMC5064113 DOI: 10.1128/genomea.01126-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequence of Streptomyces sp. SPMA113 isolated from soil in Thailand. This strain produces a new modified peptide, prajinamide, which has adipocyte differentiation activity. The genome harbors at least 30 gene clusters for synthases of polyketide and nonribosomal peptide, suggesting its potential to produce diverse secondary metabolites.
Collapse
|
22
|
Cheng KCC, Cao S, Raveh A, MacArthur R, Dranchak P, Chlipala G, Okoneski MT, Guha R, Eastman RT, Yuan J, Schultz PJ, Su XZ, Tamayo-Castillo G, Matainaho T, Clardy J, Sherman DH, Inglese J. Actinoramide A Identified as a Potent Antimalarial from Titration-Based Screening of Marine Natural Product Extracts. JOURNAL OF NATURAL PRODUCTS 2015; 78:2411-2422. [PMID: 26465675 PMCID: PMC4633019 DOI: 10.1021/acs.jnatprod.5b00489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Methods to identify the bioactive diversity within natural product extracts (NPEs) continue to evolve. NPEs constitute complex mixtures of chemical substances varying in structure, composition, and abundance. NPEs can therefore be challenging to evaluate efficiently with high-throughput screening approaches designed to test pure substances. Here we facilitate the rapid identification and prioritization of antimalarial NPEs using a pharmacologically driven, quantitative high-throughput-screening (qHTS) paradigm. In qHTS each NPE is tested across a concentration range from which sigmoidal response, efficacy, and apparent EC50s can be used to rank order NPEs for subsequent organism reculture, extraction, and fractionation. Using an NPE library derived from diverse marine microorganisms we observed potent antimalarial activity from two Streptomyces sp. extracts identified from thousands tested using qHTS. Seven compounds were isolated from two phylogenetically related Streptomyces species: Streptomyces ballenaensis collected from Costa Rica and Streptomyces bangulaensis collected from Papua New Guinea. Among them we identified actinoramides A and B, belonging to the unusually elaborated nonproteinogenic amino-acid-containing tetrapeptide series of natural products. In addition, we characterized a series of new compounds, including an artifact, 25-epi-actinoramide A, and actinoramides D, E, and F, which are closely related biosynthetic congeners of the previously reported metabolites.
Collapse
Affiliation(s)
- Ken Chih-Chien Cheng
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, C-643, Boston, Massachusetts 021151, USA
| | - Avi Raveh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ryan MacArthur
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Patricia Dranchak
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - George Chlipala
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Matthew T. Okoneski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Rajarshi Guha
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Richard T. Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Jing Yuan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Pamela J. Schultz
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Giselle Tamayo-Castillo
- Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, Costa Rica & CIPRONA-Escuela de Química, Universidad de Costa Rica, 2060 San Pedro, Costa Rica
| | - Teatulohi Matainaho
- School of Medicine and Health Sciences, University of Papua New Guinea, Boroko, Papua New Guinea
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, C-643, Boston, Massachusetts 021151, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - James Inglese
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| |
Collapse
|
23
|
Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster ALH, Wyatt MA, Magarvey NA. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 2015; 43:9645-62. [PMID: 26442528 PMCID: PMC4787774 DOI: 10.1093/nar/gkv1012] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/24/2015] [Indexed: 12/05/2022] Open
Abstract
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.
Collapse
Affiliation(s)
- Michael A Skinnider
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris A Dejong
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Philip N Rees
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chad W Johnston
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Haoxin Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew L H Webster
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Morgan A Wyatt
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nathan A Magarvey
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
24
|
Shi D, Allewell NM, Tuchman M. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases. Int J Mol Sci 2015; 16:18836-64. [PMID: 26274952 PMCID: PMC4581275 DOI: 10.3390/ijms160818836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase), N-succinyl-l-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| | - Norma M Allewell
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
- Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
25
|
Du YL, Ryan KS. Expansion of bisindole biosynthetic pathways by combinatorial construction. ACS Synth Biol 2015; 4:682-8. [PMID: 25548949 DOI: 10.1021/sb5003218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cladoniamides are indolotryptoline natural products that derive from indolocarbazole precursors. Here, we present a microbial platform to artificially redirect the cladoniamide pathway to generate unnatural bisindoles for drug discovery. Specifically, we target glycosyltransferase, halogenase, and oxidoreductase genes from the phylogenetically related indolocarbazole rebeccamycin and staurosporine pathways. We generate a series of novel compounds, reveal details about the substrate specificities of a number of enzymes, and set the stage for future efforts to develop new catalysts and compounds by engineering of bisindole genes. The strategy for structural diversification we use here could furthermore be applied to other natural product families with known biosynthetic genes.
Collapse
Affiliation(s)
- Yi-Ling Du
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|