1
|
Gu J, Lao L, Chen Y, Lin S. Investigation of protein post-translational modifications with site-specifically incorporated non-canonical amino acids. Bioorg Med Chem 2025; 117:118013. [PMID: 39602864 DOI: 10.1016/j.bmc.2024.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs. We highlight the use of genetically encoded lysine aminoacylations as chemical baits to identify aminoacylated lysine ubiquitination. Finally, we discuss the use of genetically encoded electron-rich Trp derivatives to design binding affinity-enhancing histone methylations readers.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihui Lao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Shixian Lin
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
2
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
5
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
6
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
7
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
8
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Carlson DL, Kowalewski M, Bodoor K, Lietzan AD, Hughes PF, Gooden D, Loiselle DR, Alcorta D, Dingman Z, Mueller EA, Irnov I, Modla S, Chaya T, Caplan J, Embers M, Miller JC, Jacobs-Wagner C, Redinbo MR, Spector N, Haystead TAJ. Targeting Borrelia burgdorferi HtpG with a berserker molecule, a strategy for anti-microbial development. Cell Chem Biol 2024; 31:465-476.e12. [PMID: 37918401 DOI: 10.1016/j.chembiol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.
Collapse
Affiliation(s)
- Dave L Carlson
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Mark Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Gooden
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Alcorta
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Zoey Dingman
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Shannon Modla
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Tim Chaya
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jeffrey Caplan
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Monica Embers
- Department of Microbiology and Immunology, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc, P.O. Box 14346 7020 Kit Creek Road, Ste 130, Research Triangle Park, Raliegh, NC 27709, USA
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Biology Department, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290, USA.
| | - Neil Spector
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA.
| |
Collapse
|
10
|
Tang Q, Chen X. Nascent Proteomics: Chemical Tools for Monitoring Newly Synthesized Proteins. Angew Chem Int Ed Engl 2023; 62:e202305866. [PMID: 37309018 DOI: 10.1002/anie.202305866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Cellular proteins are dynamically regulated in response to environmental stimuli. Conventional proteomics compares the entire proteome in different cellular states to identify differentially expressed proteins, which suffers from limited sensitivity for analyzing acute and subtle changes. To address this challenge, nascent proteomics has been developed, which selectively analyzes the newly synthesized proteins, thus offering a more sensitive and timely insight into the dynamic changes of the proteome. In this Minireview, we discuss recent advancements in nascent proteomics, with an emphasis on methodological developments. Also, we delve into the current challenges and provide an outlook on the future prospects of this exciting field.
Collapse
Affiliation(s)
- Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Science, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Tallon AM, Xu Y, West GM, am Ende CW, Fox JM. Thiomethyltetrazines Are Reversible Covalent Cysteine Warheads Whose Dynamic Behavior can be "Switched Off" via Bioorthogonal Chemistry Inside Live Cells. J Am Chem Soc 2023; 145:16069-16080. [PMID: 37450839 PMCID: PMC10530612 DOI: 10.1021/jacs.3c04444] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Electrophilic small molecules that can reversibly modify proteins are of growing interest in drug discovery. However, the ability to study reversible covalent probes in live cells can be limited by their reversible reactivity after cell lysis and in proteomic workflows, leading to scrambling and signal loss. We describe how thiomethyltetrazines function as reversible covalent warheads for cysteine modification, and this dynamic labeling behavior can be "switched off" via bioorthogonal chemistry inside live cells. Simultaneously, the tetrazine serves as a bioorthogonal reporter enabling the introduction of tags for fluorescent imaging or affinity purification. Thiomethyltetrazines can label isolated proteins, proteins in cellular lysates, and proteins in live cells with second-order rate constants spanning 2 orders of magnitude (k2, 1-100 M-1 s-1). Reversible modification by thiomethyltetrazines can be switched off upon the addition of trans-cyclooctene in live cells, converting the dynamic thiomethyltetrazine tag into a Diels-Alder adduct which is stable to lysis and proteomic workflows. Time-course quenching experiments were used to demonstrate temporal control over electrophilic modification. Moreover, it is shown that "locking in" the tag through Diels-Alder chemistry enables the identification of protein targets that are otherwise lost during sample processing. Three probes were further evaluated to identify unique pathways in a live-cell proteomic study. We anticipate that discovery efforts will be enabled by the trifold function of thiomethyltetrazines as electrophilic warheads, bioorthogonal reporters, and switches for "locking in" stability.
Collapse
Affiliation(s)
- Amanda M. Tallon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yingrong Xu
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Graham M. West
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
12
|
Kehrloesser S, Cast O, Elliott TS, Ernst RJ, Machel AC, Chen JX, Chin JW, Miller ML. Cell-of-origin-specific proteomics of extracellular vesicles. PNAS NEXUS 2023; 2:pgad107. [PMID: 37091541 PMCID: PMC10119638 DOI: 10.1093/pnasnexus/pgad107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/21/2023] [Indexed: 04/25/2023]
Abstract
The ability to assign cellular origin to low-abundance secreted factors in extracellular vesicles (EVs) would greatly facilitate the analysis of paracrine-mediated signaling. Here, we report a method, named selective isolation of extracellular vesicles (SIEVE), which uses cell type-specific proteome labeling via stochastic orthogonal recoding of translation (SORT) to install bioorthogonal reactive groups into the proteins derived from the cells targeted for labeling. We establish the native purification of intact EVs from a target cell, via a bioorthogonal tetrazine ligation, leading to copurification of the largely unlabeled EV proteome from the same cell. SIEVE enables capture of EV proteins at levels comparable with those obtained by antibody-based methods, which capture all EVs regardless of cellular origin, and at levels 20× higher than direct capture of SORT-labeled proteins. Using proteomic analysis, we analyze nonlabeled cargo proteins of EVs and show that the enhanced sensitivity of SIEVE allows for unbiased and comprehensive analysis of EV proteins from subpopulations of cells as well as for cell-specific EV proteomics in complex coculture systems. SIEVE can be applied with high efficiency in a diverse range of existing model systems for cell-cell communication and has direct applications for cell-of-origin EV analysis and for protein biomarker discovery.
Collapse
Affiliation(s)
- Sebastian Kehrloesser
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Oliver Cast
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Russell J Ernst
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Anne C Machel
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Jia-Xuan Chen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Martin L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Oncology Data Science, Oncology R&D, AstraZeneca, 1 Francis Crick Ave, Cambridge CB2 0AA, UK
| |
Collapse
|
13
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
14
|
Liu W, Tang Q, Meng L, Hu S, Sun DE, Li S, Dai P, Chen X. Interbacterial Chemical Communication-Triggered Nascent Proteomics. Angew Chem Int Ed Engl 2023; 62:e202214010. [PMID: 36428226 DOI: 10.1002/anie.202214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Metabolic labeling with clickable noncanonical amino acids has enabled nascent proteome profiling, which can be performed in a cell-type-specific manner. However, nascent proteomics in an intercellular communication-dependent manner remains challenging. Here we develop communication-activated profiling of protein expression (CAPPEX), which integrates the LuxI/LuxR quorum sensing circuit with the cell-type-specific nascent proteomics method to enable selective click-labeling of newly synthesized proteins in a specific bacterium upon receiving chemical signals from another reporter bacterium. CAPPEX reveals that E. coli competes with Salmonella for tryptophan as the precursor for indole, and the resulting indole suppressed the expression of virulence factors in Salmonella. This tryptophan-indole axis confers attenuation of Salmonella invasion in host cells and living mice. The CAPPEX strategy should be widely applicable for investigating various interbacterial communication processes.
Collapse
Affiliation(s)
- Weibing Liu
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Liying Meng
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.,Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Shufan Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - De-En Sun
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shan Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Genetic code expansion reveals aminoacylated lysine ubiquitination mediated by UBE2W. Nat Struct Mol Biol 2023; 30:62-71. [PMID: 36593310 DOI: 10.1038/s41594-022-00866-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/10/2022] [Indexed: 01/03/2023]
Abstract
Protein post-translational modification (PTM) regulates nearly every aspect of cellular processes in eukaryotes. However, the identification of new protein PTMs is very challenging. Here, using genetically encoded unnatural amino acids as chemical probes, we report the identification and validation of a previously unreported form of protein PTM, aminoacylated lysine ubiquitination, in which the modification occurs on the α-amine group of aminoacylated lysine. We identify more than 2,000 ubiquitination sites on all 20 aminoacylated lysines in two human cell lines. The modifications can mediate rapid protein degradation, complementing the canonical lysine ubiquitination-mediated proteome degradation. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme UBE2W acts as a writer of aminoacylated lysine ubiquitination and facilitates the ubiquitination event on proteins. More broadly, the discovery and validation of aminoacylated lysine ubiquitination paves the way for the identification and verification of new protein PTMs with the genetic code expansion strategy.
Collapse
|
16
|
Genetic Code Expansion System for Tight Control of Gene Expression in Bombyx mori Cell Lines. INSECTS 2021; 12:insects12121081. [PMID: 34940169 PMCID: PMC8709394 DOI: 10.3390/insects12121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Bombyx mori is a lepidopteran insect with economic value. Its genetic background is clear, and genome sequence is relatively complete, but the function of many genes has not been determined. The genetic code expansion system has become an important means of gene function research. In this study, a genetic code expansion system suitable for B. mori cells was established. This system included a modified tRNAPyl/Pyrrolysyl-tRNA synthetase (PylRS) pair from Methanosarcina mazei, the reporter gene D[TAG]G formed by DsRed and EGFP through amber stop codon TAG connection and the unnatural amino acid H-Lys(Boc)-OH. In silkworm BmE and BmNs cell lines, the reporter gene expression was strictly controlled by H-Lys(Boc)-OH in the presence of both PylRS and tRNAPyl. The silkworm genetic code expansion system established here is another useful controllable gene expression system besides tetracycline induced expression system. Abstract Inducible gene expression systems are important tools for studying gene function and to control protein synthesis. With the completion of the detailed map of the silkworm (Bombyx mori) genome, the study of Bombyx mori has entered the post-genome era. While the functions of many genes have been described in detail, many coding genes remain unidentified. Except for the available tetracycline induction system, there is currently a dearth of other effective induction systems for B. mori. A genetic code expansion system can be used for protein labeling and to regulate gene expression. Here, we have established a genetic code expansion system for B. mori based on the well-researched tRNAPyl/PylRS pair from Methanosarcina mazei. We used H-Lys(Boc)-OH, which is a lysine derivative to efficiently and tightly control the expression of the reporter gene DsRed[TAG]EGFP (D[TAG]G), which encoded a H-Lys(Boc)-OH-bearing protein fused with DsRed and EGFP (here regarded as D[Boc]G) in B. mori cell lines BmE and BmNs. In D[TAG]G, the amber stop codon is recognized as the orthogonal tRNAPyl. Successful application of genetic code expansion system in silkworm cell lines will support the research into the function of silkworm genes and paves the way for the identification of new genes and protein markers in silkworm.
Collapse
|
17
|
Bartoschek MD, Ugur E, Nguyen TA, Rodschinka G, Wierer M, Lang K, Bultmann S. Identification of permissive amber suppression sites for efficient non-canonical amino acid incorporation in mammalian cells. Nucleic Acids Res 2021; 49:e62. [PMID: 33684219 PMCID: PMC8216290 DOI: 10.1093/nar/gkab132] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
The genetic code of mammalian cells can be expanded to allow the incorporation of non-canonical amino acids (ncAAs) by suppressing in-frame amber stop codons (UAG) with an orthogonal pyrrolysyl-tRNA synthetase (PylRS)/tRNAPylCUA (PylT) pair. However, the feasibility of this approach is substantially hampered by unpredictable variations in incorporation efficiencies at different stop codon positions within target proteins. Here, we apply a proteomics-based approach to quantify ncAA incorporation rates at hundreds of endogenous amber stop codons in mammalian cells. With these data, we compute iPASS (Identification of Permissive Amber Sites for Suppression; available at www.bultmannlab.eu/tools/iPASS), a linear regression model to predict relative ncAA incorporation efficiencies depending on the surrounding sequence context. To verify iPASS, we develop a dual-fluorescence reporter for high-throughput flow-cytometry analysis that reproducibly yields context-specific ncAA incorporation efficiencies. We show that nucleotides up- and downstream of UAG synergistically influence ncAA incorporation efficiency independent of cell line and ncAA identity. Additionally, we demonstrate iPASS-guided optimization of ncAA incorporation rates by synonymous exchange of codons flanking the amber stop codon. This combination of in silico analysis followed by validation in living mammalian cells substantially simplifies identification as well as adaptation of sites within a target protein to confer high ncAA incorporation rates.
Collapse
Affiliation(s)
- Michael D Bartoschek
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Enes Ugur
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Tuan-Anh Nguyen
- Department of Chemistry, Synthetic Biochemistry, Technical University of Munich, Garching 85748, Germany
| | - Geraldine Rodschinka
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Kathrin Lang
- Department of Chemistry, Synthetic Biochemistry, Technical University of Munich, Garching 85748, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
18
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
19
|
Fingleton E, Li Y, Roche KW. Advances in Proteomics Allow Insights Into Neuronal Proteomes. Front Mol Neurosci 2021; 14:647451. [PMID: 33935646 PMCID: PMC8084103 DOI: 10.3389/fnmol.2021.647451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Abstract
Protein–protein interaction networks and signaling complexes are essential for normal brain function and are often dysregulated in neurological disorders. Nevertheless, unraveling neuron- and synapse-specific proteins interaction networks has remained a technical challenge. New techniques, however, have allowed for high-resolution and high-throughput analyses, enabling quantification and characterization of various neuronal protein populations. Over the last decade, mass spectrometry (MS) has surfaced as the primary method for analyzing multiple protein samples in tandem, allowing for the precise quantification of proteomic data. Moreover, the development of sophisticated protein-labeling techniques has given MS a high temporal and spatial resolution, facilitating the analysis of various neuronal substructures, cell types, and subcellular compartments. Recent studies have leveraged these novel techniques to reveal the proteomic underpinnings of well-characterized neuronal processes, such as axon guidance, long-term potentiation, and homeostatic plasticity. Translational MS studies have facilitated a better understanding of complex neurological disorders, such as Alzheimer’s disease (AD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Proteomic investigation of these diseases has not only given researchers new insight into disease mechanisms but has also been used to validate disease models and identify new targets for research.
Collapse
Affiliation(s)
- Erin Fingleton
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Yan Li
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| |
Collapse
|
20
|
Lyu Z, Zhao Y, Buuh ZY, Gorman N, Goldman AR, Islam MS, Tang HY, Wang RE. Steric-Free Bioorthogonal Labeling of Acetylation Substrates Based on a Fluorine-Thiol Displacement Reaction. J Am Chem Soc 2021; 143:1341-1347. [PMID: 33433199 PMCID: PMC8300487 DOI: 10.1021/jacs.0c05605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed a novel bioorthogonal reaction that can selectively displace fluorine substitutions alpha to amide bonds. This fluorine-thiol displacement reaction (FTDR) allows for fluorinated cofactors or precursors to be utilized as chemical reporters, hijacking acetyltransferase-mediated acetylation both in vitro and in live cells, which cannot be achieved with azide- or alkyne-based chemical reporters. The fluoroacetamide labels can be further converted to biotin or fluorophore tags using FTDR, enabling the general detection and imaging of acetyl substrates. This strategy may lead to a steric-free labeling platform for substrate proteins, expanding our chemical toolbox for functional annotation of post-translational modifications in a systematic manner.
Collapse
Affiliation(s)
- Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Yue Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Nicole Gorman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Aaron R Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
21
|
Radziwon K, Weeks AM. Protein engineering for selective proteomics. Curr Opin Chem Biol 2020; 60:10-19. [PMID: 32768891 DOI: 10.1016/j.cbpa.2020.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Post-translational modifications, complex formation, subcellular localization, and cell-type-specific expression create functionally distinct protein subpopulations that enable living systems to execute rapid and precise responses to changing conditions. Systems-level analysis of these subproteomes remains challenging, requiring preservation of spatial information or enrichment of species that are transient and present at low abundance. Engineered proteins have emerged as important tools for selective proteomics based on their capacity for highly specific molecular recognition and their genetic targetability. Here, we focus on new developments in protein engineering for selective proteomics of post-translational modifications, protein complexes, subcellular compartments, and cell types. We also address remaining challenges and future opportunities to integrate engineered protein tools across different subproteome scales to map the proteome with unprecedented depth and detail.
Collapse
Affiliation(s)
- Katarzyna Radziwon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Schwark DG, Schmitt MA, Biddle W, Fisk JD. The Influence of Competing tRNA Abundance on Translation: Quantifying the Efficiency of Sense Codon Reassignment at Rarely Used Codons. Chembiochem 2020; 21:2274-2286. [PMID: 32203635 DOI: 10.1002/cbic.202000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Indexed: 11/07/2022]
Abstract
A quantitative understanding of how system composition and molecular properties conspire to determine the fidelity of translation is lacking. Our strategy directs an orthogonal tRNA to directly compete against endogenous tRNAs to decode individual targeted codons in a GFP reporter. Sets of directed sense codon reassignment measurements allow the isolation of particular factors contributing to translational fidelity. In this work, we isolated the effect of tRNA concentration on translational fidelity by evaluating reassignment of the 15 least commonly employed E. coli sense codons. Eight of the rarely used codons are reassigned with greater than 20 % efficiency. Both tRNA abundance and codon demand moderately inversely correlate with reassignment efficiency. Furthermore, the reassignment of rarely used codons does not appear to confer a fitness advantage relative to reassignment of other codons. These direct competition experiments also map potential targets for genetic code expansion. The isoleucine AUA codon is particularly attractive for the incorporation of noncanonical amino acids, with a nonoptimized reassignment efficiency of nearly 70 %.
Collapse
Affiliation(s)
- David G Schwark
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Margaret A Schmitt
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Wil Biddle
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - John D Fisk
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| |
Collapse
|
23
|
Bifunctional Non-Canonical Amino Acids: Combining Photo-Crosslinking with Click Chemistry. Biomolecules 2020; 10:biom10040578. [PMID: 32290035 PMCID: PMC7226127 DOI: 10.3390/biom10040578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic code expansion is a powerful tool for the study of protein interactions, as it allows for the site-specific incorporation of a photoreactive group via non-canonical amino acids. Recently, several groups have published bifunctional amino acids that carry a handle for click chemistry in addition to the photo-crosslinker. This allows for the specific labeling of crosslinked proteins and therefore the pulldown of peptides for further analysis. This review describes the properties and advantages of different bifunctional amino acids, and gives an overview about current and future applications.
Collapse
|
24
|
Tera M, Luedtke NW. Three-Component Bioorthogonal Reactions on Cellular DNA and RNA. Bioconjug Chem 2019; 30:2991-2997. [DOI: 10.1021/acs.bioconjchem.9b00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
25
|
Wu H, Devaraj NK. Mining Proteomes Using Bioorthogonal Probes. Cell Chem Biol 2019; 23:751-753. [PMID: 27447043 DOI: 10.1016/j.chembiol.2016.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The definition of proteomes in cells and animals at particular stages facilitates an understanding of protein function. In this issue of Cell Chemical Biology, Elliott et al. (2016) report an elegant approach of bioorthogonal labeling and enrichment of proteomes from stochastic orthogonal recoding of translation. With this method, low abundance proteomes can be identified in a multicellular system.
Collapse
Affiliation(s)
- Haoxing Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Fredens J, Wang K, de la Torre D, Funke LFH, Robertson WE, Christova Y, Chia T, Schmied WH, Dunkelmann DL, Beránek V, Uttamapinant C, Llamazares AG, Elliott TS, Chin JW. Total synthesis of Escherichia coli with a recoded genome. Nature 2019; 569:514-518. [PMID: 31092918 DOI: 10.1038/s41586-019-1192-5] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 11/09/2022]
Abstract
Nature uses 64 codons to encode the synthesis of proteins from the genome, and chooses 1 sense codon-out of up to 6 synonyms-to encode each amino acid. Synonymous codon choice has diverse and important roles, and many synonymous substitutions are detrimental. Here we demonstrate that the number of codons used to encode the canonical amino acids can be reduced, through the genome-wide substitution of target codons by defined synonyms. We create a variant of Escherichia coli with a four-megabase synthetic genome through a high-fidelity convergent total synthesis. Our synthetic genome implements a defined recoding and refactoring scheme-with simple corrections at just seven positions-to replace every known occurrence of two sense codons and a stop codon in the genome. Thus, we recode 18,214 codons to create an organism with a 61-codon genome; this organism uses 59 codons to encode the 20 amino acids, and enables the deletion of a previously essential transfer RNA.
Collapse
Affiliation(s)
- Julius Fredens
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Louise F H Funke
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Yonka Christova
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Tiongsun Chia
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Václav Beránek
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Chayasith Uttamapinant
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | | | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
27
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Wilson RS, Nairn AC. Cell-Type-Specific Proteomics: A Neuroscience Perspective. Proteomes 2018; 6:51. [PMID: 30544872 PMCID: PMC6313874 DOI: 10.3390/proteomes6040051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific analysis has become a major focus for many investigators in the field of neuroscience, particularly because of the large number of different cell populations found in brain tissue that play roles in a variety of developmental and behavioral disorders. However, isolation of these specific cell types can be challenging due to their nonuniformity and complex projections to different brain regions. Moreover, many analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein extracted from specific cell populations. Despite these challenges, methods to improve proteomic yield and increase resolution continue to develop at a rapid rate. In this review, we highlight the importance of cell-type-specific proteomics in neuroscience and the technical difficulties associated. Furthermore, current progress and technological advancements in cell-type-specific proteomics research are discussed with an emphasis in neuroscience.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
29
|
Beránek V, Willis JCW, Chin JW. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells. Biochemistry 2018; 58:387-390. [PMID: 30260626 PMCID: PMC6365905 DOI: 10.1021/acs.biochem.8b00808] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently characterized a new class of pyrrolysyl-tRNA synthetase (PylRS)/PyltRNA pairs from Methanomassiliicocales that are active and orthogonal in Escherichia coli. The aminoacyl-tRNA synthetases (aaRSs) of these pairs lack the N-terminal domain that is essential for tRNA recognition and in vivo activity in the Methanosarcina mazei ( Mm) PylRS but share a homologous active site with MmPylRS; this facilitates the transplantation of mutations discovered with existing PylRS systems into the new PylRS systems to reprogram their substrate specificity for the incorporation of noncanonical amino acids (ncAAs). Several of the new PylRS/PyltRNA pairs, or their evolved variants [including Methanomethylophilus alvus ( Ma) PylRS/ MaPyltRNA(6)CUA], are mutually orthogonal to the MmPylRS/ MmPyltRNA pair, and the active sites of the Mm pair and Ma pair can be diverged to enable the incorporation of distinct ncAAs in response to distinct codons via orthogonal translation in E. coli. Here we demonstrate that MaPylRS/ MaPyltRNA(6)CUA is orthogonal to the aaRSs and tRNAs in mammalian cells and directs efficient incorporation of ncAAs into proteins. Moreover, we confirm that the MaPylRS/ MaPyltRNA(6) and MmPylRS/ MmPyltRNA pairs are mutually orthogonal in mammalian cells and demonstrates that these pairs can be used to encode distinct ncAAs into a protein in mammalian cells. Thus, the MaPylRS/ MaPyltRNA(6)CUA pair provides an additional pair that is orthogonal in both E. coli and mammalian systems and is mutually orthogonal to the most widely used system for genetic code expansion. Our results provide a foundation for expanding the scope of genetic code expansion and may also facilitate strategies for proteome-wide ncAA tagging with mutually orthogonal systems.
Collapse
Affiliation(s)
- Václav Beránek
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , England , U.K
| | - Julian C W Willis
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , England , U.K
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , England , U.K
| |
Collapse
|
30
|
van Geenen FAG, Franssen MCR, Zuilhof H, Nielen MWF. Reactive Laser Ablation Electrospray Ionization Time-Resolved Mass Spectrometry of Click Reactions. Anal Chem 2018; 90:10409-10416. [PMID: 30063331 PMCID: PMC6127799 DOI: 10.1021/acs.analchem.8b02290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.
Collapse
Affiliation(s)
- Fred A.
M. G. van Geenen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
| | - Michel W. F. Nielen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
31
|
Dermit M, Dodel M, Mardakheh FK. Methods for monitoring and measurement of protein translation in time and space. MOLECULAR BIOSYSTEMS 2018; 13:2477-2488. [PMID: 29051942 PMCID: PMC5795484 DOI: 10.1039/c7mb00476a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of protein translation constitutes a crucial step in control of gene expression. Here we review recent methods for system-wide monitoring and measurement of protein translation.
Regulation of protein translation constitutes a crucial step in control of gene expression. In comparison to transcriptional regulation, however, translational control has remained a significantly under-studied layer of gene expression. This trend is now beginning to shift thanks to recent advances in next-generation sequencing, proteomics, and microscopy based methodologies which allow accurate monitoring of protein translation rates, from single target messenger RNA molecules to genome-wide scale studies. In this review, we summarize these recent advances, and discuss how they are enabling researchers to study translational regulation in a wide variety of in vitro and in vivo biological systems, with unprecedented depth and spatiotemporal resolution.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Martin Dodel
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Faraz K Mardakheh
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
32
|
Hoffmann JE, Dziuba D, Stein F, Schultz C. A Bifunctional Noncanonical Amino Acid: Synthesis, Expression, and Residue-Specific Proteome-wide Incorporation. Biochemistry 2018; 57:4747-4752. [PMID: 29932646 DOI: 10.1021/acs.biochem.8b00397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mapping of weak and hence transient interactions between low-abundance interacting molecules is still a major challenge in systems biology and protein biochemistry. Therefore, additional system-wide acting tools are needed to determine protein interactomics. Most important are reagents that can be applied at any kind of protein interface and the possibility to enrich cross-linked fragments with high efficiency. In this study, we report the synthesis of a novel noncanonical amino acid that features a diazirine group for ultraviolet cross-linking as well as an alkyne group for labeling by click chemistry. This bifunctional amino acid, called PrDiAzK, may be inserted into almost any protein interface with minimal structural perturbation using genetic code expansion. We demonstrate that PrDiAzK can be site-selectively incorporated into proteins in both bacterial and mammalian cell cultures, and we show that PrDiAzK allows protein labeling as well as cross-linking. In addition, we tested PrDiAzK for proteome-wide incorporation via stochastic orthogonal recoding of translation, implying potential applications in system-wide mapping of protein-protein interactions in the future.
Collapse
Affiliation(s)
- Jan-Erik Hoffmann
- Department of Physiology & Pharmacology , Oregon Health & Science University , L334, 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239-3098 , United States
| | - Dmytro Dziuba
- European Molecular Biology Laboratory , Cell Biology & Biophysics Unit , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Frank Stein
- European Molecular Biology Laboratory , Cell Biology & Biophysics Unit , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Carsten Schultz
- Department of Physiology & Pharmacology , Oregon Health & Science University , L334, 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239-3098 , United States.,European Molecular Biology Laboratory , Cell Biology & Biophysics Unit , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| |
Collapse
|
33
|
Yang AC, du Bois H, Olsson N, Gate D, Lehallier B, Berdnik D, Brewer KD, Bertozzi CR, Elias JE, Wyss-Coray T. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics. J Am Chem Soc 2018; 140:7046-7051. [PMID: 29775058 DOI: 10.1021/jacs.8b03074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyrY43G) and a phenylalanyl ( MmPheT413G) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyrY43G and MmPheT413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyrY43G and MmPheT413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Berdnik
- Center for Tissue Regeneration, Repair and Restoration , V.A. Palo Alto Healthcare System , Palo Alto , California 94304 , United States
| | | | | | | | - Tony Wyss-Coray
- Center for Tissue Regeneration, Repair and Restoration , V.A. Palo Alto Healthcare System , Palo Alto , California 94304 , United States
| |
Collapse
|
34
|
Abstract
Chemical tools are transforming our understanding of biomolecules and living systems. Included in this group are bioorthogonal reagents-functional groups that are inert to most biological species, but can be selectively ligated with complementary probes, even in live cells and whole organisms. Applications of these tools have revealed fundamental new insights into biomolecule structure and function-information often beyond the reach of genetic approaches. In many cases, the knowledge gained from bioorthogonal probes has enabled new questions to be asked and innovative research to be pursued. Thus, the continued development and application of these tools promises to both refine our view of biological systems and facilitate new discoveries. Despite decades of achievements in bioorthogonal chemistry, limitations remain. Several reagents are too large or insufficiently stable for use in cellular environments. Many bioorthogonal groups also cross-react with one another, restricting them to singular tasks. In this Account, we describe our work to address some of the voids in the bioorthogonal toolbox. Our efforts to date have focused on small reagents with a high degree of tunability: cyclopropenes, triazines, and cyclopropenones. These motifs react selectively with complementary reagents, and their unique features are enabling new pursuits in biology. The Account is organized by common themes that emerged in our development of novel bioorthogonal reagents and reactions. First, natural product structures can serve as valuable starting points for probe design. Cyclopropene, triazine, and cyclopropenone motifs are all found in natural products, suggesting that they would be metabolically stable and compatible with a variety of living systems. Second, fine-tuning bioorthogonal reagents is essential for their successful translation to biological systems. Different applications demand different types of probes; thus, generating a collection of tools that span a continuum of reactivities and stabilities remains an important goal. We have used both computational analyses and mechanistic studies to guide the optimization of various cyclopropene and triazine probes. Along the way, we identified reagents that are chemoselective but best suited for in vitro work. Others are selective and robust enough for use in living organisms. The last section of this Account highlights the need for the continued pursuit of new reagents and reactions. Challenges exist when bioorthogonal chemistries must be used in concert, given that many exploit similar mechanisms and cannot be used simultaneously. Such limitations have precluded certain multicomponent labeling studies and other biological applications. We have relied on mechanistic and computational insights to identify mutually orthogonal sets of reactions, in addition to exploring unique genres of reactivity. The continued development of mechanistically distinct, biocompatible reactions will further diversify the bioorthogonal reaction portfolio for examining biomolecules.
Collapse
|
35
|
Schmitt MA, Biddle W, Fisk JD. Mapping the Plasticity of the Escherichia coli Genetic Code with Orthogonal Pair-Directed Sense Codon Reassignment. Biochemistry 2018; 57:2762-2774. [PMID: 29668270 DOI: 10.1021/acs.biochem.8b00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in Escherichia coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8 to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.
Collapse
Affiliation(s)
- Margaret A Schmitt
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Wil Biddle
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - John D Fisk
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
36
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|
37
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 707] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
38
|
Krogager TP, Ernst RJ, Elliott TS, Calo L, Beránek V, Ciabatti E, Spillantini MG, Tripodi M, Hastings MH, Chin JW. Labeling and identifying cell-specific proteomes in the mouse brain. Nat Biotechnol 2017; 36:156-159. [PMID: 29251727 DOI: 10.1038/nbt.4056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022]
Abstract
We develop an approach to tag proteomes synthesized by specific cell types in dissociated cortex, brain slices, and the brains of live mice. By viral-mediated expression of an orthogonal pyrrolysyl-tRNA synthetase-tRNAXXX pair in a cell type of interest and providing a non-canonical amino acid with a chemical handle, we selectively label neuronal or glial proteomes. The method enables the identification of proteins from spatially and genetically defined regions of the brain.
Collapse
Affiliation(s)
- Toke P Krogager
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Russell J Ernst
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Laura Calo
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, UK
| | - Václav Beránek
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Ernesto Ciabatti
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | | | - Marco Tripodi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Michael H Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| |
Collapse
|
39
|
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
40
|
Ramberger E, Dittmar G. Tissue Specific Labeling in Proteomics. Proteomes 2017; 5:proteomes5030017. [PMID: 28718811 PMCID: PMC5620534 DOI: 10.3390/proteomes5030017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples. While it is routinely used for the characterization of simple cell line systems, the analysis of the cell specific proteome in multicellular organisms and tissues poses a significant challenge. Isolating a subset of cells from tissues requires mechanical and biochemical separation or sorting, a process which can alter cellular signaling, and thus, the composition of the proteome. Recently, several approaches for cell selective labeling of proteins, that include bioorthogonal amino acids, biotinylating enzymes, and genetic tools, have been developed. These tools facilitate the selective labeling of proteins, their interactome, or of specific cell types within a tissue or an organism, while avoiding the difficult and contamination-prone biochemical separation of cells from the tissue. In this review, we give an overview of existing techniques and their application in cell culture models and whole animals.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Mass-Spectrometry Core Unit, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
- Berlin School of Integrative Oncology (BSIO), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Gunnar Dittmar
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1272 Strassen, Luxembourg.
| |
Collapse
|
41
|
Kang K, Park J, Kim E. Tetrazine ligation for chemical proteomics. Proteome Sci 2017; 15:15. [PMID: 28674480 PMCID: PMC5485739 DOI: 10.1186/s12953-017-0121-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
Determining small molecule-target protein interaction is essential for the chemical proteomics. One of the most important keys to explore biological system in chemical proteomics field is finding first-class molecular tools. Chemical probes can provide great spatiotemporal control to elucidate biological functions of proteins as well as for interrogating biological pathways. The invention of bioorthogonal chemistry has revolutionized the field of chemical biology by providing superior chemical tools and has been widely used for investigating the dynamics and function of biomolecules in live condition. Among 20 different bioorthogonal reactions, tetrazine ligation has been spotlighted as the most advanced bioorthogonal chemistry because of their extremely faster kinetics and higher specificity than others. Therefore, tetrazine ligation has a tremendous potential to enhance the proteomic research. This review highlights the current status of tetrazine ligation reaction as a molecular tool for the chemical proteomics.
Collapse
Affiliation(s)
- Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104 Republic of Korea
| | - Jongmin Park
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114 USA
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499 Republic of Korea
| |
Collapse
|
42
|
Nguyen K, Fazio M, Kubota M, Nainar S, Feng C, Li X, Atwood SX, Bredy TW, Spitale RC. Cell-Selective Bioorthogonal Metabolic Labeling of RNA. J Am Chem Soc 2017; 139:2148-2151. [PMID: 28139910 DOI: 10.1021/jacs.6b11401] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stringent chemical methods to profile RNA expression within discrete cellular populations remains a key challenge in biology. To address this issue, we developed a chemical-genetic strategy for metabolic labeling of RNA. Cell-specific labeling of RNA can be profiled and imaged using bioorthogonal chemistry. We anticipate that this platform will provide the community with a much-needed chemical toolset for cell-type specific profiling of cell-specific transcriptomes derived from complex biological systems.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Michael Fazio
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Miles Kubota
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Sarah Nainar
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Chao Feng
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Xiang Li
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Scott X Atwood
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Timothy W Bredy
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, ‡Department of Neurobiology, §Department of Developmental & Cellular Biology and ∥Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| |
Collapse
|
43
|
Cell-selective proteomics for biological discovery. Curr Opin Chem Biol 2017; 36:50-57. [PMID: 28088696 DOI: 10.1016/j.cbpa.2016.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022]
Abstract
Cells alter the proteome to respond to environmental and developmental cues. Global analysis of proteomic responses is of limited value in heterogeneous environments, where there is no 'average' cell. Advances in sequencing, protein labeling, mass spectrometry, and data analysis have fueled recent progress in the investigation of specific subpopulations of cells in complex systems. Here we highlight recently developed chemical tools that enable cell-selective proteomic analysis of complex biological systems, from bacterial pathogens to whole animals.
Collapse
|
44
|
Cell-specific proteomics with SORT-E. Nat Methods 2016. [DOI: 10.1038/nmeth.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|