1
|
Deck KEV, Brittain WDG. Synthesis of metal-binding amino acids. Org Biomol Chem 2024. [PMID: 39364570 DOI: 10.1039/d4ob01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The ability for amino acid residues to bind metals underpins the functions of metalloproteins to conduct a plethora of critical processes in living organisms as well as unnatural applications in the fields of catalysis, sensing and medicinal chemistry. The capability to access metal-binding peptides heavily relies on the ability to generate appropriate building blocks. This review outlines recently developed strategies for the synthesis of metal binding non-proteinogenic amino acids. The chemistries to access, as well as to incorporate these amino acids into peptides is presented herein.
Collapse
Affiliation(s)
- Katherine E V Deck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
2
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
3
|
Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC. Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 2022; 13:1864. [PMID: 35387988 PMCID: PMC8987029 DOI: 10.1038/s41467-022-29239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic control over protein function is a central challenge in synthetic biology. To address this challenge, we describe the development of an integrated computational and experimental workflow to incorporate a metal-responsive chemical switch into proteins. Pairs of bipyridinylalanine (BpyAla) residues are genetically encoded into two structurally distinct enzymes, a serine protease and firefly luciferase, so that metal coordination biases the conformations of these enzymes, leading to reversible control of activity. Computational analysis and molecular dynamics simulations are used to rationally guide BpyAla placement, significantly reducing experimental workload, and cell-free protein synthesis coupled with high-throughput experimentation enable rapid prototyping of variants. Ultimately, this strategy yields enzymes with a robust 20-fold dynamic range in response to divalent metal salts over 24 on/off switches, demonstrating the potential of this approach. We envision that this strategy of genetically encoding chemical switches into enzymes will complement other protein engineering and synthetic biology efforts, enabling new opportunities for applications where precise regulation of protein function is critical.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrew C Hunt
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
4
|
Gómez-González J, Bouzada D, Pérez-Márquez LA, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Stereoselective Self-Assembly of DNA Binding Helicates Directed by the Viral β-Annulus Trimeric Peptide Motif. Bioconjug Chem 2021; 32:1564-1569. [PMID: 34320309 PMCID: PMC8485332 DOI: 10.1021/acs.bioconjchem.1c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Combining
coordination chemistry and peptide engineering offers
extraordinary opportunities for developing novel molecular (supra)structures.
Here, we demonstrate that the β-annulus motif is capable of
directing the stereoselective assembly of designed peptides containing
2,2′-bipyridine ligands into parallel three-stranded chiral
peptide helicates, and that these helicates selectively bind with
high affinity to three-way DNA junctions.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lidia A Pérez-Márquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Ji Y, Guan F, Zhou X, Liu X, Wu N, Liu D, Tian J. Construction of a mApple-D6A3-mediated biosensor for detection of heavy metal ions. AMB Express 2020; 10:213. [PMID: 33284386 PMCID: PMC7721944 DOI: 10.1186/s13568-020-01154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Pollution of heavy metals in agricultural environments is a growing problem to the health of the world’s human population. Green, low-cost, and efficient detection methods can help control such pollution. In this study, a protein biosensor, mApple-D6A3, was built from rice-derived Cd2+-binding protein D6A3 fused with the red fluorescent protein mApple at the N-terminus to detect the contents of heavy metals. Fluorescence intensity of mApple fused with D6A3 indicated the biosensor’s sensitivity to metal ions and its intensity was more stable under alkaline conditions. mApple-D6A3 was most sensitive to Cu2+, then Ni2+, then Cd2+. Isothermal titration calorimetry experiments demonstrated that mApple-D6A3 successfully bound to each of these three metal ions, and its ability to bind the ions was, from strongest to weakest, Cu2+ > Cd2+ > Ni2+. There were strong linear relationships between the fluorescence intensity of mApple-D6A3 and concentrations of Cd2+ (0–100 μM), Cu2+ (0–60 μM) and Ni2+ (0–120 μM), and their respective R2 values were 0.994, 0.973 and 0.973. When mApple-D6A3 was applied to detect concentrations of heavy metal ions in water (0–0.1 mM) or culture medium (0–1 mM), its accuracy for detection attained more than 80%. This study demonstrates the potential of this biosensor as a tool for detection of heavy metal ions.
Collapse
|
6
|
Rezhdo A, Islam M, Huang M, Van Deventer JA. Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 2019; 60:168-178. [PMID: 30974337 DOI: 10.1016/j.copbio.2019.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
There is growing evidence that noncanonical amino acids (ncAAs) can be utilized in the creation of biological therapeutics ranging from protein conjugates to cell-based therapies. However, when does genetically encoding ncAAs yield biologics with unique properties compared to other approaches? In this review, we attempt to answer this question in the broader context of therapeutic development, emphasizing advances within the past two years. In several areas, ncAAs add valuable routes to therapeutically relevant entities, but application-specific needs ultimately determine whether ncAA-mediated or alternative solutions are preferred. Looking forward, using ncAAs to perform 'protein medicinal chemistry,' in which atomic-level changes to proteins dramatically enhance therapeutic properties, is a promising emerging area. Further upgrades to the performance of ncAA incorporation technologies will be essential to realizing the full potential of ncAAs in biological therapeutics.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States; Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
7
|
Gómez-González J, Peña DG, Barka G, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Directed Self-Assembly of Trimeric DNA-Bindingchiral Miniprotein Helicates. Front Chem 2018; 6:520. [PMID: 30425980 PMCID: PMC6218460 DOI: 10.3389/fchem.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
We propose that peptides are highly versatile platforms for the precise design of supramolecular metal architectures, and particularly, for the controlled assembly of helicates. In this context, we show that the bacteriophage T4 Fibritin foldon (T4Ff) can been engineered on its N-terminus with metal-chelating 2,2'-bipyridine units that stereoselectively assemble in the presence of Fe(II) into parallel, three-stranded peptide helicates with preferred helical orientation. Modeling studies support the proposed self-assembly and the stability of the final helicate. Furthermore, we show that these designed mini-metalloproteins selectively recognize three-way DNA junctions over double-stranded DNA.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego G Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ghofrane Barka
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, Spain.,Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy
| | | | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Alcala-Torano R, Walther M, Sommer DJ, Park CK, Ghirlanda G. Rational design of a hexameric protein assembly stabilized by metal chelation. Biopolymers 2018; 109:e23233. [PMID: 30191549 DOI: 10.1002/bip.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
Abstract
Protein-based self-assembled nanostructures hold tremendous promise as smart materials. One strategy to control the assembly of individual protein modules takes advantage of the directionality and high affinity bonding afforded by metal chelation. Here, we describe the use of 2,2'-bipyridine units (Bpy) as side chains to template the assembly of large structures (MW approx. 35 000 Da) in a metal-dependent manner. The structures are trimers of independently folded 3-helix bundles, and are held together by 2 Me(Bpy)3 complexes. The assemblies are stable to thermal denaturation, and are more than 90% helical at 90°C. Circular dichroism spectroscopy shows that one of the 2 possible (Bpy)3 enantiomers is favored over the other. Because of the sequence pliability of the starting peptides, these constructs could find use to organize functional groups at controlled positions within a supramolecular assembly.
Collapse
Affiliation(s)
| | - Mathieu Walther
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Dayn J Sommer
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Chad K Park
- Department of Biochemistry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
9
|
Almhjell PJ, Mills JH. Metal-chelating non-canonical amino acids in metalloprotein engineering and design. Curr Opin Struct Biol 2018; 51:170-176. [DOI: 10.1016/j.sbi.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
|
10
|
Gan F, Liu R, Wang F, Schultz PG. Functional Replacement of Histidine in Proteins To Generate Noncanonical Amino Acid Dependent Organisms. J Am Chem Soc 2018; 140:3829-3832. [DOI: 10.1021/jacs.7b13452] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fei Gan
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Renhe Liu
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Peter G. Schultz
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
|
12
|
Bersellini M, Roelfes G. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes. Org Biomol Chem 2017; 15:3069-3073. [DOI: 10.1039/c7ob00390k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial metalloenzymes were created from multidrug resistance regulator proteins by in vivo incorporation of an unnatural metal binding amino acid.
Collapse
Affiliation(s)
- Manuela Bersellini
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
13
|
Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proc Natl Acad Sci U S A 2016; 113:15012-15017. [PMID: 27940918 DOI: 10.1073/pnas.1600188113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala)3]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.
Collapse
|