1
|
Stepanov AI, Putlyaeva LV, Besedovskaya Z, Shuvaeva AA, Karpenko NV, Rukh S, Gorbachev DA, Malyshevskaia KK, Terskikh AV, Lukyanov KA, Gurskaya NG. Genetically encoded epigenetic sensors for visualization of H3K9me3, H3K9ac and H3K4me1 histone modifications in living cells. Biochem Biophys Res Commun 2024; 733:150715. [PMID: 39317113 DOI: 10.1016/j.bbrc.2024.150715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Post-translational modifications of histones play a crucial role in chromatin structure maintenance and epigenetic regulation. The LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscape) method represents a promising approach for tracking histone modifications. It involves visualization of epigenetic modifications using genetically encoded fluorescent sensors and further analysis of the obtained intranuclear patterns by multiparametric image analysis. In this study, we designed three new red fluorescent sensors-MPP8-Red, AF9-Red and DPF3-Red-for live-cell visualization of patterns of H3K9me3, H3K8ac and H3K4me1, respectively. The observed fluorescent patterns were visually distinguishable, and LiveMIEL analysis clearly classified them into three corresponding groups. We propose that these sensors can be used for live-cell dynamic analysis of changes in organization of three epigenetic types of chromatin.
Collapse
Affiliation(s)
- Afanasii I Stepanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Lidia V Putlyaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Zlata Besedovskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
| | - Alexandra A Shuvaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Nikita V Karpenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia; MIREA - Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, Vernadskogo Pr. 78, 119454, Moscow, Russia
| | - Shah Rukh
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
| | - Dmitry A Gorbachev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Kseniia K Malyshevskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey V Terskikh
- The Scintillon Research Institute, 6404 Nancy Ridge Dr., San Diego, CA, 92121, USA
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nadya G Gurskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997, Moscow, Russia.
| |
Collapse
|
2
|
Stepanov AI, Shuvaeva AA, Putlyaeva LV, Lukyanov DK, Galiakberova AA, Gorbachev DA, Maltsev DI, Pronina V, Dylov DV, Terskikh AV, Lukyanov KA, Gurskaya NG. Tracking induced pluripotent stem cell differentiation with a fluorescent genetically encoded epigenetic probe. Cell Mol Life Sci 2024; 81:381. [PMID: 39222083 PMCID: PMC11368889 DOI: 10.1007/s00018-024-05359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Epigenetic modifications (methylation, acetylation, etc.) of core histones play a key role in regulation of gene expression. Thus, the epigenome changes strongly during various biological processes such as cell differentiation and dedifferentiation. Classical methods of analysis of epigenetic modifications such as mass-spectrometry and chromatin immuno-precipitation, work with fixed cells only. Here we present a genetically encoded fluorescent probe, MPP8-Green, for detecting H3K9me3, a histone modification associated with inactive chromatin. This probe, based on the chromodomain of MPP8, allows for visualization of H3K9me3 epigenetic landscapes in single living cells. We used this probe to track changes in H3K9me3 landscapes during the differentiation of induced pluripotent stem cells (iPSCs) into induced neurons. Our findings revealed two major waves of global H3K9me3 reorganization during 4-day differentiation, namely on the first and third days, whereas nearly no changes occurred on the second and fourth days. The proposed method LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscapes), which combines genetically encoded epigenetic probes and machine learning approaches, enables classification of multiparametric epigenetic signatures of single cells during stem cell differentiation and potentially in other biological models.
Collapse
Affiliation(s)
- Afanasii I Stepanov
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexandra A Shuvaeva
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Lidia V Putlyaeva
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Daniil K Lukyanov
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Adelya A Galiakberova
- Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997, Moscow, Russia
| | - Dmitry A Gorbachev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Dmitry I Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Valeriya Pronina
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
| | - Dmitry V Dylov
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia
| | - Alexey V Terskikh
- The Scintillon Research Institute, 6404 Nancy Ridge Dr., San Diego, CA, 92121, USA
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nadya G Gurskaya
- Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997, Moscow, Russia.
| |
Collapse
|
3
|
Lee K, Barone M, Waterbury AL, Jiang H, Nam E, DuBois-Coyne SE, Whedon SD, Wang ZA, Caroli J, Neal K, Ibeabuchi B, Dhoondia Z, Kuroda MI, Liau BB, Beck S, Mattevi A, Cole PA. Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1. Nat Chem Biol 2024:10.1038/s41589-024-01671-9. [PMID: 38965385 DOI: 10.1038/s41589-024-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis-regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marco Barone
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jonatan Caroli
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Katherine Neal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brian Ibeabuchi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zuzer Dhoondia
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samuel Beck
- Department of Dermatology, Boston University School of Medicine & Boston Medical Center, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Tsokas P, Hsieh C, Flores-Obando RE, Bernabo M, Tcherepanov A, Hernández AI, Thomas C, Bergold PJ, Cottrell JE, Kremerskothen J, Shouval HZ, Nader K, Fenton AA, Sacktor TC. KIBRA anchoring the action of PKMζ maintains the persistence of memory. SCIENCE ADVANCES 2024; 10:eadl0030. [PMID: 38924398 PMCID: PMC11204205 DOI: 10.1126/sciadv.adl0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
How can short-lived molecules selectively maintain the potentiation of activated synapses to sustain long-term memory? Here, we find kidney and brain expressed adaptor protein (KIBRA), a postsynaptic scaffolding protein genetically linked to human memory performance, complexes with protein kinase Mzeta (PKMζ), anchoring the kinase's potentiating action to maintain late-phase long-term potentiation (late-LTP) at activated synapses. Two structurally distinct antagonists of KIBRA-PKMζ dimerization disrupt established late-LTP and long-term spatial memory, yet neither measurably affects basal synaptic transmission. Neither antagonist affects PKMζ-independent LTP or memory that are maintained by compensating PKCs in ζ-knockout mice; thus, both agents require PKMζ for their effect. KIBRA-PKMζ complexes maintain 1-month-old memory despite PKMζ turnover. Therefore, it is not PKMζ alone, nor KIBRA alone, but the continual interaction between the two that maintains late-LTP and long-term memory.
Collapse
Affiliation(s)
- Panayiotis Tsokas
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Changchi Hsieh
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Rafael E. Flores-Obando
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Matteo Bernabo
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Andrew Tcherepanov
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - A. Iván Hernández
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christian Thomas
- Internal Medicine D (MedD), Department of Molecular Nephrology, University Hospital of Münster, 48149 Münster, Germany
| | - Peter J. Bergold
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - James E. Cottrell
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Joachim Kremerskothen
- Internal Medicine D (MedD), Department of Molecular Nephrology, University Hospital of Münster, 48149 Münster, Germany
| | - Harel Z. Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical at Houston, Houston, TX 77030, USA
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - André A. Fenton
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Neuroscience Institute at NYU Langone Medical Center, New York, NY 10016, USA
| | - Todd C. Sacktor
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
5
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
6
|
Glancy E, Choy N, Eckersley-Maslin MA. Bivalent chromatin: a developmental balancing act tipped in cancer. Biochem Soc Trans 2024; 52:217-229. [PMID: 38385532 PMCID: PMC10903468 DOI: 10.1042/bst20230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and H3K27me3 modifications and is typically located at unmethylated promoters of lowly transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to poise developmental genes for future activation, silencing or stable repression upon lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers, both the deregulation of existing domains and the creation of de novo bivalent states is associated with either the activation or silencing of transcriptional programmes. This may facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasticity, chemoresistance and immune evasion. Here, we review current methods for detecting bivalent chromatin and discuss the factors involved in the formation and fine-tuning of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a model in which bivalent chromatin represents a dynamic balance between otherwise opposing states, where the underlying DNA sequence is primed for the future activation or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips cells into an altered epigenetic and phenotypic space, facilitating both developmental and cancer processes.
Collapse
Affiliation(s)
- Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Natalie Choy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melanie A. Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Stepanov AI, Zhurlova PA, Shuvaeva AA, Sokolinskaya EL, Gurskaya NG, Lukyanov KA, Putlyaeva LV. Optogenetics for sensors: On-demand fluorescent labeling of histone epigenetics. Biochem Biophys Res Commun 2023; 687:149174. [PMID: 37939505 DOI: 10.1016/j.bbrc.2023.149174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Post-translational modifications of histones to a large extent determine the functional state of chromatin loci. Dynamic visualization of histone modifications with genetically encoded fluorescent sensors makes it possible to monitor changes in the epigenetic state of a single living cell. At the same time, the sensors can potentially compete with endogenous factors recognizing these modifications. Thus, prolonged binding of the sensors to chromatin can affect normal epigenetic regulation. Here, we report an optogenetic sensor for live-cell visualization of histone H3 methylated at lysine-9 (H3K9me3) named MPP8-LAMS (MPP8-based light-activated modification sensor). MPP8-LAMS consists of several fusion protein parts (from N- to C-terminus): i) nuclear export signal (NES), ii) far-red fluorescent protein Katushka, iii) H3K9me3-binding reader domain of the human M phase phosphoprotein 8 (MPP8), iv) the light-responsive AsLOV2 domain, which exposes a nuclear localization signal (NLS) upon blue light stimulation. In the dark, due to the NES, MPP8-LAMS is localized in the cytosol. Under blue light illumination, MPP8-LAMS underwent an efficient translocation from cytosol to nucleus, enabling visualization of H3K9me3-enriched loci. Such an on-demand visualization minimizes potential impact on cell physiology as most of the time the sensor is separated from its target. In general, the present work extends the application of optogenetics to the area of advanced use of genetically encoded sensors.
Collapse
Affiliation(s)
- Afanasii I Stepanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Polina A Zhurlova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Alexandra A Shuvaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, 141701 Dolgoprudny, Russia
| | - Elena L Sokolinskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Nadya G Gurskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Lidia V Putlyaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
8
|
Mätlik K, Govek EE, Paul MR, Allis CD, Hatten ME. Histone bivalency regulates the timing of cerebellar granule cell development. Genes Dev 2023; 37:570-589. [PMID: 37491148 PMCID: PMC10499015 DOI: 10.1101/gad.350594.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Developing neurons undergo a progression of morphological and gene expression changes as they transition from neuronal progenitors to mature neurons. Here we used RNA-seq and H3K4me3 and H3K27me3 ChIP-seq to analyze how chromatin modifications control gene expression in a specific type of CNS neuron: the mouse cerebellar granule cell (GC). We found that in proliferating GC progenitors (GCPs), H3K4me3/H3K27me3 bivalency is common at neuronal genes and undergoes dynamic changes that correlate with gene expression during migration and circuit formation. Expressing a fluorescent sensor for bivalent domains revealed subnuclear bivalent foci in proliferating GCPs. Inhibiting H3K27 methyltransferases EZH1 and EZH2 in vitro and in organotypic cerebellar slices dramatically altered the expression of bivalent genes, induced the down-regulation of migration-related genes and up-regulation of synaptic genes, inhibited glial-guided migration, and accelerated terminal differentiation. Thus, histone bivalency is required to regulate the timing of the progression from progenitor cells to mature neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, Rockefeller University, New York, New York 10065, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, Rockefeller University, New York, New York 10065, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, Rockefeller University, New York, New York 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
9
|
Mätlik K, Govek EE, Paul MR, Allis CD, Hatten ME. Histone bivalency regulates the timing of cerebellar granule cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526881. [PMID: 36778390 PMCID: PMC9915618 DOI: 10.1101/2023.02.02.526881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing neurons undergo a progression of morphological and gene expression changes as they transition from neuronal progenitors to mature, multipolar neurons. Here we use RNA-seq and H3K4me3 and H3K27me3 ChIP-seq to analyze how chromatin modifications control gene expression in a specific type of CNS neuron, the mouse cerebellar granule cell (GC). We find that in proliferating GC progenitors (GCPs), H3K4me3/H3K27me3 bivalency is common at neuronal genes and undergoes dynamic changes that correlate with gene expression during migration and circuit formation. Expressing a fluorescent sensor for bivalent H3K4me3 and H3K27me3 domains revealed subnuclear bivalent foci in proliferating GCPs. Inhibiting H3K27 methyltransferases EZH1 and EZH2 in vitro and in organotypic cerebellar slices dramatically altered the expression of bivalent genes and induced the downregulation of migration-related genes and upregulation of synaptic genes, inhibited glial-guided migration, and accelerated terminal differentiation. Thus, histone bivalency is required to regulate the timing of the progression from progenitor cells to mature neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, Rockefeller University, 10065, New York, NY, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, Rockefeller University, 10065, New York, NY, USA
| | - Matthew R. Paul
- Bioinformatics Resource Center, Rockefeller University, 10065, New York, NY, USA
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, 10065, New York, NY, USA
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, Rockefeller University, 10065, New York, NY, USA
| |
Collapse
|
10
|
Haynes KA, Priode JH. Rapid Single-Pot Assembly of Modular Chromatin Proteins for Epigenetic Engineering. Methods Mol Biol 2023; 2599:191-214. [PMID: 36427151 DOI: 10.1007/978-1-0716-2847-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromatin is the nucleoprotein complex that organizes genomic DNA in the nuclei of eukaryotic cells. Chromatin-modifying enzymes and chromatin-binding regulators generate chromatin states that affect DNA compaction, repair, gene expression, and ultimately cell phenotype. Many natural chromatin mediators contain subdomains that can be isolated and recombined to build synthetic regulators and probes. Engineered chromatin proteins make up a growing collection of new tools for cell engineering and can help deepen our understanding of the mechanism by which chromatin features, such as modifications of histones and DNA, contribute to the epigenetic states that govern DNA-templated processes. To support efficient exploration of the large combinatorial design space of synthetic chromatin proteins, we have developed a Golden Gate assembly method for one-step construction of protein-encoding recombinant DNA. A set of standard 2-amino acid linkers allows facile assembly of any combination of up to four protein modules, obviating the need to design different compatible overhangs to ligate different modules. Beginning with the identification of protein modules of interest, a synthetic chromatin protein can be built and expressed in vitro or in cells in under 2 weeks.
Collapse
Affiliation(s)
- Karmella A Haynes
- W. H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| | - J Harrison Priode
- W. H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
12
|
Lukyanov KA. Fluorescent proteins for a brighter science. Biochem Biophys Res Commun 2022; 633:29-32. [DOI: 10.1016/j.bbrc.2022.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
|
13
|
Veggiani G, Villaseñor R, Martyn GD, Tang JQ, Krone MW, Gu J, Chen C, Waters ML, Pearce KH, Baubec T, Sidhu SS. High-affinity chromodomains engineered for improved detection of histone methylation and enhanced CRISPR-based gene repression. Nat Commun 2022; 13:6975. [PMID: 36379931 PMCID: PMC9666628 DOI: 10.1038/s41467-022-34269-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone methylation is an important post-translational modification that plays a crucial role in regulating cellular functions, and its dysregulation is implicated in cancer and developmental defects. Therefore, systematic characterization of histone methylation is necessary to elucidate complex biological processes, identify biomarkers, and ultimately, enable drug discovery. Studying histone methylation relies on the use of antibodies, but these suffer from lot-to-lot variation, are costly, and cannot be used in live cells. Chromatin-modification reader domains are potential affinity reagents for methylated histones, but their application is limited by their modest affinities. We used phage display to identify key residues that greatly enhance the affinities of Cbx chromodomains for methylated histone marks and develop a general strategy for enhancing the affinity of chromodomains of the human Cbx protein family. Our strategy allows us to develop powerful probes for genome-wide binding analysis and live-cell imaging. Furthermore, we use optimized chromodomains to develop extremely potent CRISPR-based repressors for tailored gene silencing. Our results highlight the power of engineered chromodomains for analyzing protein interaction networks involving chromatin and represent a modular platform for efficient gene silencing.
Collapse
Affiliation(s)
- G Veggiani
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada.
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - R Villaseñor
- Division of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - G D Martyn
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - J Q Tang
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - M W Krone
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - J Gu
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
| | - C Chen
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
| | - M L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - K H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - T Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
- Division of Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584, Utrecht, The Netherlands
| | - S S Sidhu
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada.
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA, Putlyaeva LV. Studying Chromatin Epigenetics with Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms23168988. [PMID: 36012253 PMCID: PMC9409072 DOI: 10.3390/ijms23168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epigenetic modifications of histones (methylation, acetylation, phosphorylation, etc.) are of great importance in determining the functional state of chromatin. Changes in epigenome underlay all basic biological processes, such as cell division, differentiation, aging, and cancerous transformation. Post-translational histone modifications are mainly studied by immunoprecipitation with high-throughput sequencing (ChIP-Seq). It enables an accurate profiling of target modifications along the genome, but suffers from the high cost of analysis and the inability to work with living cells. Fluorescence microscopy represents an attractive complementary approach to characterize epigenetics. It can be applied to both live and fixed cells, easily compatible with high-throughput screening, and provide access to rich spatial information down to the single cell level. In this review, we discuss various fluorescent probes for histone modification detection. Various types of live-cell imaging epigenetic sensors suitable for conventional as well as super-resolution fluorescence microscopy are described. We also focus on problems and future perspectives in the development of fluorescent probes for epigenetics.
Collapse
Affiliation(s)
- Afanasii I. Stepanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Zlata V. Besedovskaia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Maria A. Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklay St. 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| | - Lidia V. Putlyaeva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| |
Collapse
|
15
|
Guidotti N, Eördögh Á, Mivelaz M, Rivera-Fuentes P, Fierz B. Multivalent Peptide Ligands To Probe the Chromocenter Microenvironment in Living Cells. ACS Chem Biol 2022; 18:1066-1075. [PMID: 35447032 DOI: 10.1021/acschembio.2c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin is spatially organized into functional states that are defined by both the presence of specific histone post-translational modifications (PTMs) and a defined set of chromatin-associated "reader" proteins. Different models for the underlying mechanism of such compartmentalization have been proposed, including liquid-liquid phase separation (LLPS) of chromatin-associated proteins to drive spatial organization. Heterochromatin, characterized by lysine 9 methylation on histone H3 (H3K9me3) and the presence of heterochromatin protein 1 (HP1) as a multivalent reader, represents a prime example of a spatially defined chromatin state. Heterochromatin foci exhibit features of protein condensates driven by LLPS; however, the exact nature of the physicochemical environment within heterochromatin in different cell types is not completely understood. Here we present tools to interrogate the environment of chromatin subcompartments in the form of modular, cell-permeable, multivalent, and fluorescent peptide probes. These probes can be tuned to target specific chromatin states by providing binding sites to reader proteins and can thereby integrate into the PTM-reader interaction network. Here we generate probes specific to HP1, directing them to heterochromatin at chromocenters in mouse fibroblasts. Moreover, we use a polarity-sensing photoactivatable probe that photoconverts to a fluorescent state in phase-separated protein droplets and thereby reports on the local microenvironment. Equipped with this dye, our probes indeed turn fluorescent in murine chromocenters. Image analysis and single-molecule tracking experiments reveal that the compartments are less dense and more dynamic than HP1 condensates obtained in vitro. Our results thus demonstrate that the local organization of heterochromatin in chromocenters is internally more complex than an HP1 condensate.
Collapse
Affiliation(s)
- Nora Guidotti
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ádám Eördögh
- EPFL, SB ISIC LOCBP, Station 6, CH-1015 Lausanne, Switzerland
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | | | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Franklin KA, Shields CE, Haynes KA. Beyond the marks: reader-effectors as drivers of epigenetics and chromatin engineering. Trends Biochem Sci 2022; 47:417-432. [PMID: 35427480 PMCID: PMC9074927 DOI: 10.1016/j.tibs.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Chromatin is a system of proteins and DNA that regulates chromosome organization and gene expression in eukaryotes. Essential features that support these processes include biochemical marks on histones and DNA, 'writer' enzymes that generate or remove these marks and proteins that translate the marks into transcriptional regulation: reader-effectors. Here, we review recent studies that reveal how reader-effectors drive chromatin-mediated processes. Advances in proteomics and epigenomics have accelerated the discovery of chromatin marks and their correlation with gene states, outpacing our understanding of the corresponding reader-effectors. Therefore, we summarize the current state of knowledge and open questions about how reader-effectors impact cellular function and human disease and discuss how synthetic biology can deepen our knowledge of reader-effector activity.
Collapse
Affiliation(s)
- Kierra A Franklin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Zhao H, Liu C, Ding W, Tang L, Fang Y, Chen Y, Hu L, Yuan Y, Fang D, Lin S. Manipulating Cation-π Interactions with Genetically Encoded Tryptophan Derivatives. J Am Chem Soc 2022; 144:6742-6748. [PMID: 35380832 DOI: 10.1021/jacs.1c12944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cation-π interactions are the major noncovalent interactions for molecular recognition and play a central role in a broad area of chemistry and biology. Despite tremendous success in understanding the origin and biological importance of cation-π interactions, the design and synthesis of stronger cation-π interactions remain elusive. Here, we report an approach that greatly increases the binding energy of cation-π interactions by replacing Trp in the aromatic box with an electron-rich Trp derivative using the genetic code expansion strategy. The binding affinity between histone H3K4me3 and its reader is increased more than eightfold using genetically encoded 6-methoxy-Trp. Furthermore, through a systematic engineering process, we construct an H3K4me3 Super-Reader with single-digit nM affinity for H3K4me3 detection and imaging. More broadly, this approach paves the way for manipulating cation-π interactions for a variety of applications.
Collapse
Affiliation(s)
- Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chao Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Wenlong Ding
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Linzhen Hu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Zhao X, Ji X, Qu J, Xie K, Wang Z, Fang P, Wang Y, Wan Y, Yang Y, Zhang W, Shi P. Sequencing-free Analysis of Multiple Methylations on Gene-Specific mRNAs. J Am Chem Soc 2022; 144:6010-6018. [PMID: 35321539 DOI: 10.1021/jacs.2c01036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA epigenetics is a new layer of mechanism to regulate gene expression, but limited techniques are available to profile the status of mRNA modifications. Here, we describe a molecule proximity-based technique for simultaneous analysis of multiple types of mRNA methylation with specific gene information in living cells. N6-methyladenosine (m6A) or N1-methyladenosine (m1A) modifications on multiple mRNAs can be individually or simultaneously analyzed. A chip fabricated with vertically aligned, high-aspect-ratio diamond nanoneedles was used to access the intracellular domain in a minimum-invasive format and to isolate the mRNAs out of the cell cytoplasm while keeping cells alive. In the subsequent on-chip analytical procedures, the isolated RNAs were encoded, amplified, and visualized to derive a quantitative measurement of the associated gene-specific m6A or m1A modifications. Notably, a proximity ligation approach was developed to resolve dual methylation on an individual mRNA segment. Using this method, we investigated the dynamics of mRNA methylation in mammalian cells under physical or chemical stimuli and showed that m6A and m1A in mRNAs are heavily involved in the cellular stress response. Our results also suggested the common existence of single m6A modification in the basigin (BSG) mRNA but a rare occurrence of m6A and m1A dual methylation in the same BSG transcript.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR 999077, China
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zixun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.,CAS Key Laboratory of Nano-Bio Interface Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Peilin Fang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Youyang Wan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China 999077
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR 999077, China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China 999077.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
19
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
20
|
Yao Y, Wen Q, Zhang T, Yu C, Chan KM, Gan H. Advances in Approaches to Study Chromatin-Mediated Epigenetic Memory. ACS Synth Biol 2022; 11:16-25. [PMID: 34965084 DOI: 10.1021/acssynbio.1c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.
Collapse
Affiliation(s)
- Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianjun Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
21
|
Mendonca A, Sánchez O, Zhao H, Lin L, Min A, Yuan C. Development and application of novel BiFC probes for cell sorting based on epigenetic modification. Cytometry A 2022; 101:339-350. [PMID: 35001539 DOI: 10.1002/cyto.a.24530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
The epigenetic signature of cancer cells varies with disease progression and drug treatment, necessitating the study of these modifications with single cell resolution over time. The rapid detection and sorting of cells based on their underlying epigenetic modifications by flow cytometry can enable single cell measurement and tracking to understand tumor heterogeneity and progression warranting the development of a live-cell compatible epigenome probes. In this work, we developed epigenetic probes based on bimolecular fluorescence complementation (BiFC) and demonstrated their capabilities in quantifying and sorting cells based on their epigenetic modification contents. The sorted cells are viable and exhibit distinctive responses to chemo-therapy drugs. Notably, subpopulations of MCF7 cells with higher H3K9me3 levels are more likely to develop resistance to Doxorubicin. Subpopulations with higher 5mC levels, on the other hand, tend to be more responsive. Overall, we report for the first time, the application of novel split probes in flow cytometry application and elucidated the potential role of 5mC and H3K9me3 in determining drug responses.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Oscar Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
22
|
Sato Y, Nakao M, Kimura H. Live-Cell Imaging Probes to Track Chromatin Modification Dynamics. Microscopy (Oxf) 2021; 70:415-422. [PMID: 34329472 PMCID: PMC8491620 DOI: 10.1093/jmicro/dfab030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal organization of chromatin is regulated at different levels in the nucleus. Epigenetic modifications such as DNA methylation and histone modifications are involved in chromatin regulation and play fundamental roles in genome function. While the one-dimensional epigenomic landscape in many cell types has been revealed by chromatin immunoprecipitation and sequencing, the dynamic changes of chromatin modifications and their relevance to chromatin organization and genome function remain elusive. Live-cell probes to visualize chromatin and its modifications have become powerful tools to monitor dynamic chromatin regulation. Bulk chromatin can be visualized by both small fluorescent dyes and fluorescent proteins, and specific endogenous genomic loci have been detected by adapting genome-editing tools. To track chromatin modifications in living cells, various types of probes have been developed. Protein domains that bind weakly to specific modifications, such as chromodomains for histone methylation, can be repeated to create a tighter binding probe that can then be tagged with a fluorescent protein. It has also been demonstrated that antigen-binding fragments and single-chain variable fragments from modification-specific antibodies can serve as binding probes without disturbing cell division, development and differentiation. These modification-binding modules are used in modification sensors based on fluorescence/Förster resonance energy transfer to measure the intramolecular conformational changes triggered by modifications. Other probes can be created using a bivalent binding system, such as fluorescence complementation or luciferase chemiluminescence. Live-cell chromatin modification imaging using these probes will address dynamic chromatin regulation and will be useful for assaying and screening effective epigenome drugs in cells and organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masaru Nakao
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
23
|
Mendonca A, Sánchez OF, Xie J, Carneiro A, Lin L, Yuan C. Identifying distinct heterochromatin regions using combinatorial epigenetic probes in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194725. [PMID: 34174495 DOI: 10.1016/j.bbagrm.2021.194725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
The 3D spatial organization of the genome controls gene expression and cell functionality. Heterochromatin (HC), which is the densely compacted and largely silenced part of the chromatin, is the driver for the formation and maintenance of nuclear organization in the mammalian nucleus. It is functionally divided into highly compact constitutive heterochromatin (cHC) and transcriptionally poised facultative heterochromatin (fHC). Long regarded as a static structure, the highly dynamic nature of the heterochromatin is being slowly understood and studied. These changes in HC occur on various temporal scales during the cell cycle and differentiation processes. Most methods that capture information about the heterochromatin are static techniques that cannot provide a readout of how the HC organization evolves with time. The delineation of specific areas such as fHC are also rendered difficult due to its diffusive nature and lack of specific features. Another degree of complexity in characterizing changes in heterochromatin occurs due to the heterogeneity in the HC organization of individual cells, necessitating single cell studies. Overall, there is a need for live cell compatible tools that can stably track the heterochromatin as it undergoes re-organization. In this work, we present an approach to track cHC and fHC based on the epigenetic hallmarks associated with them. Unlike conventional immunostaining approaches, we use small recombinant protein probes that allow us to dynamically monitor the HC by binding to modifications specific to the cHC and fHC, such as H3K9me3, DNA methylation and H3K27me3. We demonstrate the use of the probes to follow the changes in HC induced by drug perturbations at the single cell level. We also use the probe sets combinatorically to simultaneously track chromatin regions enriched in two selected epigenetic modifications using a FRET based approach that enabled us tracking distinctive chromatin features in situ.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Ana Carneiro
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
24
|
Chen F, Bai M, Cao X, Xue J, Zhao Y, Wu N, Wang L, Zhang D, Zhao Y. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat Commun 2021; 12:1965. [PMID: 33785750 PMCID: PMC8009891 DOI: 10.1038/s41467-021-22284-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Exploring spatial organization and relationship of diverse biomolecules within cellular nanoenvironments is important to elucidate the fundamental processes of life. However, it remains methodologically challenging. Herein, we report a molecular recognition mechanism cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments containing diverse chromatin modifications. As an example, we characterize the nanoenvironments of three DNA modifications around one histone posttranslational modification (PTM). These DNA modifications in fixed cells are labeled with respective DNA barcoding probes, and then the PTM site is tethered with a DNA walking probe. Cell-TALKING can continuously produce cleavage records of any barcoding probes nearby the walking probe. New 3'-OH ends are generated on the cleaved barcoding probes to induce DNA amplification for downstream detections. Combining fluorescence imaging, we identify various combinatorial chromatin modifications and investigate their dynamic changes during cell cycles. We also explore the nanoenvironments in different cancer cell lines and clinical specimens. In principle, using high-throughput sequencing instead of fluorescence imaging may allow the detection of complex cellular nanoenvironments containing tens of biomolecules such as transcription factors.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, PR China
| | - Dexin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
25
|
|
26
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol 2020; 38:728-736. [PMID: 32123383 PMCID: PMC7289633 DOI: 10.1038/s41587-020-0434-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023]
Abstract
Chromatin modifications regulate genome function by recruiting protein factors to the genome. However, the protein composition at distinct chromatin modifications remains to be fully characterized. Here, we use natural protein domains as modular building blocks to develop engineered chromatin readers (eCRs) selective for DNA methylation and histone tri-methylation at H3K4, H3K9 a H3K27 residues. We first demonstrate their utility as selective chromatin binders in living cells by stably expressing eCRs in mouse embryonic stem cells and measuring their subnuclear localisation, genomic distribution and histone modification–binding preference. By fusing eCRs to the biotin ligase BASU, we establish ChromID, a method for identifying the chromatin-dependent protein interactome based on proximity biotinylation, and apply it to distinct chromatin modifications in mouse stem cells. Using a synthetic dual-modification reader, we also uncover the protein composition at bivalent promoters marked by H3K4me3 and H3K27me3. These results highlight the ability of ChromID to obtain a detailed view of protein interaction networks on chromatin.
Collapse
|
28
|
Baskin NL, Haynes KA. Chromatin engineering offers an opportunity to advance epigenetic cancer therapy. Nat Struct Mol Biol 2020; 26:842-845. [PMID: 31582843 DOI: 10.1038/s41594-019-0299-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Natecia L Baskin
- Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
| | - Karmella A Haynes
- Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA.
| |
Collapse
|
29
|
Albanese KI, Krone MW, Petell CJ, Parker MM, Strahl BD, Brustad EM, Waters ML. Engineered Reader Proteins for Enhanced Detection of Methylated Lysine on Histones. ACS Chem Biol 2020; 15:103-111. [PMID: 31634430 PMCID: PMC7365037 DOI: 10.1021/acschembio.9b00651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone post-translational modifications (PTMs) are crucial for many cellular processes including mitosis, transcription, and DNA repair. The cellular readout of histone PTMs is dependent on both the chemical modification and histone site, and the array of histone PTMs on chromatin is dynamic throughout the eukaryotic life cycle. Accordingly, methods that report on the presence of PTMs are essential tools for resolving open questions about epigenetic processes and for developing therapeutic diagnostics. Reader domains that recognize histone PTMs have shown potential as advantageous substitutes for anti-PTM antibodies, and engineering efforts aimed at enhancing reader domain affinities would advance their efficacy as antibody alternatives. Here we describe engineered chromodomains from Drosophila melanogaster and humans that bind more tightly to H3K9 methylation (H3K9me) marks and result in the tightest reported reader-H3K9me interaction to date. Point mutations near the binding interface of the HP1 chromodomain were screened in a combinatorial fashion, and a triple mutant was found that binds 20-fold tighter than the native scaffold without any loss in PTM-site selectivity. The beneficial mutations were then translated to a human homologue, CBX1, resulting in an even tighter interaction with H3K9me3. Furthermore, we show that these engineered readers (eReaders) increase detection of H3K9me marks in several biochemical assays and outperform a commercial anti-H3K9me antibody in detecting H3K9me-containing nucleosomes in vitro, demonstrating the utility of eReaders to complement antibodies in epigenetics research.
Collapse
Affiliation(s)
- Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mackenzie W. Krone
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher J. Petell
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, USA 27599; USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, USA 27599; USA
| | - Madison M. Parker
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, USA 27599; USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, USA 27599; USA
| | - Eric M. Brustad
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang CL, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 2020; 367:eaaz5357. [PMID: 31949053 PMCID: PMC7339343 DOI: 10.1126/science.aaz5357] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.
Collapse
Affiliation(s)
- David P Hoffman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kirby R Campbell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lei Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John A Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel R Stabley
- Neuroimaging Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Bioimage Analysis Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David Peale
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kathy Schaefer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wim Pomp
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
31
|
Abstract
Understanding chromatin regulation holds enormous promise for controlling gene regulation, predicting cellular identity, and developing diagnostics and cellular therapies. However, the dynamic nature of chromatin, together with cell-to-cell heterogeneity in its structure, limits our ability to extract its governing principles. Single cell mapping of chromatin modifications, in conjunction with expression measurements, could help overcome these limitations. Here, we review recent advances in single cell-based measurements of chromatin modifications, including optimization to reduce DNA loss, improved DNA sequencing, barcoding, and antibody engineering. We also highlight several applications of these techniques that have provided insights into cell-type classification, mapping modification co-occurrence and heterogeneity, and monitoring chromatin dynamics.
Collapse
Affiliation(s)
- Connor H Ludwig
- Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Rm 042, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Rm 042, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Sneppen K, Ringrose L. Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat Commun 2019; 10:2133. [PMID: 31086177 PMCID: PMC6513952 DOI: 10.1038/s41467-019-10130-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polycomb (PcG) and Trithorax (TrxG) group proteins give stable epigenetic memory of silent and active gene expression states, but also allow poised states in pluripotent cells. Here we systematically address the relationship between poised, active and silent chromatin, by integrating 73 publications on PcG/TrxG biochemistry into a mathematical model comprising 144 nucleosome modification states and 8 enzymatic reactions. Our model predicts that poised chromatin is bistable and not bivalent. Bivalent chromatin, containing opposing active and silent modifications, is present as an unstable background population in all system states, and different subtypes co-occur with active and silent chromatin. In contrast, bistability, in which the system switches frequently between stable active and silent states, occurs under a wide range of conditions at the transition between monostable active and silent system states. By proposing that bistability and not bivalency is associated with poised chromatin, this work has implications for understanding the molecular nature of pluripotency. Polycomb and Trithorax group proteins regulate silent and active gene expression states, but also allow poised states in pluripotent cells. Here the authors present a mathematical model that integrates data on Polycomb/ Trithorax biochemistry into a single coherent framework which predicts that poised chromatin is not bivalent as previously proposed, but is bistable, meaning that the system switches frequently between stable active and silent states.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 22, 10115, Berlin, Germany.
| |
Collapse
|
33
|
Abstract
In this issue of Cell Chemical Biology, new methods are reported to interrogate histone interactions and modifications. Kleiner et al. (2018) develop a chemical proteomics platform for profiling of direct, context-dependent histone-protein interactions in living cells, and Delachat et al. (2018) engineer fluorescent sensors for coexisting histone modifications in live stem cells.
Collapse
|
34
|
Tekel SJ, Barrett C, Vargas D, Haynes KA. Design, Construction, and Validation of Histone-Binding Effectors in Vitro and in Cells. Biochemistry 2018; 57:4707-4716. [PMID: 29791133 DOI: 10.1021/acs.biochem.8b00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chromatin is a system of nuclear proteins and nucleic acids that plays a pivotal role in gene expression and cell behavior and is therefore the subject of intense study for cell development and cancer research. Biochemistry, crystallography, and reverse genetics have elucidated the macromolecular interactions that drive chromatin regulation. One of the central mechanisms is the recognition of post-translational modifications (PTMs) on histone proteins by a family of nuclear proteins known as "readers". This knowledge has launched a wave of activity around the rational design of proteins that interact with histone PTMs. Useful molecular tools have emerged from this work, enabling researchers to probe and manipulate chromatin states in live cells. Chromatin-based proteins represent a vast design space that remains underexplored. Therefore, we have developed a rapid prototyping platform to identify engineered fusion proteins that bind histone PTMs in vitro and regulate genes near the same histone PTMs in living cells. We have used our system to build gene activators with strong avidity for the gene silencing-associated histone PTM H3K27me3. Here, we describe procedures and data for cell-free production of fluorescently tagged fusion proteins, enzyme-linked immunosorbent assay-based measurement of histone PTM binding, and a live cell assay to demonstrate that the fusion proteins modulate transcriptional activation at a site that carries the target histone PTM. This pipeline will be useful for synthetic biologists who are interested in designing novel histone PTM-binding actuators and probes.
Collapse
Affiliation(s)
- Stefan J Tekel
- School of Biological and Health Systems Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| | - Cassandra Barrett
- School of Biological and Health Systems Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| | - Daniel Vargas
- School of Biological and Health Systems Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| | - Karmella A Haynes
- School of Biological and Health Systems Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
35
|
Tekel SJ, Vargas DA, Song L, LaBaer J, Caplan MR, Haynes KA. Tandem Histone-Binding Domains Enhance the Activity of a Synthetic Chromatin Effector. ACS Synth Biol 2018; 7:842-852. [PMID: 29429329 DOI: 10.1021/acssynbio.7b00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than DNA sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. We have previously reported the development and validation of the "polycomb-based transcription factor" (PcTF), a fusion protein that recognizes histone modifications through a protein-protein interaction between its polycomb chromodomain (PCD) motif and trimethylated lysine 27 of histone H3 (H3K27me3) at genomic sites. We demonstrated that PcTF activates genes at methyl-histone-enriched loci in cancer-derived cell lines. However, PcTF induces modest activation of a methyl-histone associated reporter compared to a DNA-binding activator. Therefore, we modified PcTF to enhance its binding avidity. Here, we demonstrate the activity of a modified regulator called Pc2TF, which has two tandem copies of the H3K27me3-binding PCD at the N-terminus. Pc2TF has a smaller apparent dissociation constant value in vitro and shows enhanced gene activation in HEK293 cells compared to PcTF. These results provide compelling evidence that the intrinsic histone-binding activity of the PCD motif can be used to tune the activity of synthetic histone-binding transcriptional regulators.
Collapse
Affiliation(s)
- Stefan J. Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, United States
| | - Daniel A. Vargas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, United States
| | - Lusheng Song
- Biodesign Institute, Arizona State University, Tempe, Arizona 85287-9709, United States
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona 85287-9709, United States
| | - Michael R. Caplan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, United States
| | - Karmella A. Haynes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, United States
| |
Collapse
|