1
|
Song Y, Huang P, Duan L. Light-Inducible Deformation of Mitochondria in Live Cells. Methods Mol Biol 2025; 2840:185-200. [PMID: 39724353 DOI: 10.1007/978-1-0716-4047-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Mitochondria are dynamic organelles with constantly changing morphologies. Despite recent reports indicating that mechanical cues modulate mitochondrial morphologies and functions, there is a lack of methods that can exclusively and precisely exert mechanical forces to and deform mitochondria in live cells. Therefore, how mitochondria sense and respond to mechanical forces remains largely elusive. Optogenetic methods open up new venues for remote and precise manipulation of intracellular activities using light, providing an unprecedented opportunity to establish targeted mechano-stimulation toward mitochondria. This chapter describes the development of a novel optogenetic approach to optically mechanostimulate and induce the deformation of mitochondria. In this approach, light-gated protein-protein heterodimerization recruits force-generating molecular motors to the outer mitochondrial membrane, enabling direct exertion of mechanical force on mitochondria. Details for the design, application, and experimental procedures are laid out in this chapter. This method presents a mitochondria-specific mechano-stimulator for studying the correlation between mitochondrial morphology and functions as well as mitochondrial mechanobiology.
Collapse
Affiliation(s)
- Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Fernández Casafuz AB, Brigante AMA, De Rossi MAC, Monastra AG, Bruno L. Deciphering the intracellular forces shaping mitochondrial motion. Sci Rep 2024; 14:23914. [PMID: 39397143 PMCID: PMC11471753 DOI: 10.1038/s41598-024-74734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
We propose a novel quantitative method to explore the forces affecting mitochondria within living cells in an almost non-invasive fashion. This new tool enables the detection of localized mechanical impulses on these organelles that occur amidst the stationary fluctuations caused by the thermal jittering in the cytoplasm. Recent experimental evidence shows that the action of mechanical forces has important effects on the dynamics, morphology and distribution of mitochondria in cells. In particular, their crosstalk with the cytoskeleton has been found to alter these organelles function; however, the mechanisms underlying this phenomenon are largely unknown. Our results highlight the different functions that cytoskeletal networks play in shaping mitochondrial dynamics. This work presents a novel technique to extend our knowledge of how the impact of mechanical cues can be quantified at the single organelle level. Moreover, this approach can be expanded to the study of other organelles or biopolymers.
Collapse
Affiliation(s)
- Agustina Belén Fernández Casafuz
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
| | - Azul Marí A Brigante
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, 1428, Argentina
| | - Marí A Cecilia De Rossi
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, 1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandro Gabriel Monastra
- Universidad Nacional de General Sarmiento, Instituto de Ciencias, Los Polvorines, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Bruno
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Song Y, Zhao Z, Xu L, Huang P, Gao J, Li J, Wang X, Zhou Y, Wang J, Zhao W, Wang L, Zheng C, Gao B, Jiang L, Liu K, Guo Y, Yao X, Duan L. Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Dev Cell 2024; 59:1396-1409.e5. [PMID: 38569547 DOI: 10.1016/j.devcel.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Linyu Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jingxuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Jinhui Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR 999077, China
| | - Bo Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yusong Guo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China.
| |
Collapse
|
4
|
Wu Y, Ding C, Sharif B, Weinreb A, Swaim G, Hao H, Yogev S, Watanabe S, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. J Cell Biol 2024; 223:e202305105. [PMID: 38470363 PMCID: PMC10932739 DOI: 10.1083/jcb.202305105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Mitochondria transport is crucial for axonal mitochondria distribution and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 binding to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1, and metaxin2. We conclude that transport complexes containing kinesin-1 and RIC-7 polarize at the leading edge of mitochondria and are required for anterograde axonal transport in C. elegans.
Collapse
Affiliation(s)
- Youjun Wu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Chen Ding
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Behrang Sharif
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Weinreb
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Grace Swaim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyan Hao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Wang Y, Bi Z, Song Y, Duan L, Chen SC. Selective activation of photoactivatable fluorescent protein based on binary holography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3382-3393. [PMID: 38855656 PMCID: PMC11161383 DOI: 10.1364/boe.519531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/11/2024]
Abstract
The ability to deliver laser doses to different target locations with high spatial and temporal resolution has been a long-sought goal in photo-stimulation and optogenetics research via, for example, photoactivatable proteins. These light-sensitive proteins undergo conformational changes upon photoactivation, serving functions such as triggering fluorescence, modulating ion channel activities, or initiating biochemical reactions within cells. Conventionally, photo-stimulation on light-sensitive proteins is performed by serially scanning a laser focus or via 2D projection, which is limited by relatively low spatiotemporal resolution. In this work, we present a programmable two-photon stimulation method based on a digital micromirror device (DMD) and binary holography to perform the activation of photoactivatable green fluorescent protein (PAGFP) in live cells. This method achieved grayscale and 3D selective PAGFP activation with subcellular resolution. In the experiments, we demonstrated the 3D activation capability and investigated the diffusion dynamics of activated PAGFP on the cell membrane. A regional difference in cell membrane diffusivity was observed, indicating the great potential of our approach in interrogating the spatiotemporal dynamics of cellular processes inside living cells.
Collapse
Affiliation(s)
- Yintao Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
- Centre for Perceptual and Interactive Intelligence (CPII), Hong Kong Science Park, N.T., Hong Kong SAR, China
| | - Zhenyu Bi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
| | - Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
- Centre for Perceptual and Interactive Intelligence (CPII), Hong Kong Science Park, N.T., Hong Kong SAR, China
| |
Collapse
|
6
|
Liu X, Xu L, Song Y, Zhao Z, Li X, Wong CY, Chen R, Feng J, Gou Y, Qi Y, Chow HM, Yao S, Wang Y, Gao S, Liu X, Duan L. Force-induced tail-autotomy mitochondrial fission and biogenesis of matrix-excluded mitochondrial-derived vesicles for quality control. Proc Natl Acad Sci U S A 2024; 121:e2217019121. [PMID: 38547062 PMCID: PMC10998583 DOI: 10.1073/pnas.2217019121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Linyu Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Xinyu Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Cheuk-Yiu Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Rong Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR999077, China
| | - Jianxiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, China
| | - Yitao Gou
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yajing Qi
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR999077, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR999077, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, China
| | - Xingguo Liu
- Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese University of Hong Kong-Guangzhou Institutes of Biomedicine and Health (CUHK-GIBH) Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou510000, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR999077, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
7
|
Mai TL, Derreumaux P, Nguyen PH. Structure and Elasticity of Mitochondrial Membranes: A Molecular Dynamics Simulation Study. J Phys Chem B 2023; 127:10778-10791. [PMID: 38084584 DOI: 10.1021/acs.jpcb.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Mitochondria are known as the powerhouse of the cell because they produce energy in the form of adenosine triphosphate. They also have other crucial functions such as regulating apoptosis, calcium homeostasis, and reactive oxygen species production. To perform these diverse functions, mitochondria adopt specific structures and frequently undergo dynamic shape changes, indicating that their mechanical properties play an essential role in their functions. To gain a detailed understanding at the molecular level of the structure and mechanical properties of mitochondria, we carry out atomistic molecular dynamics simulations for three inner mitochondrial membranes and three outer mitochondrial membrane models. These models take into account variations in cardiolipin and cholesterol concentrations as well as the symmetry/asymmetry between the two leaflets. Our simulations allow us to calculate various structural quantities and the bending, twisting, and tilting elastic moduli of the membrane models. Our results indicate that the structures of the inner and outer mitochondrial membranes are quite similar and do not depend much on the variation in lipid compositions. However, the bending modulus of the membranes increases with increasing concentrations of cardiolipin or cholesterol but decreases with a membrane asymmetry. Notably, we found that the dipole potential of the membrane increases with an increasing cardiolipin concentration. Finally, possible roles of cardiolipin in regulating ion and proton currents and maintaining the cristate are discussed in some details.
Collapse
Affiliation(s)
- Thi Ly Mai
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris 75005, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Phuong H Nguyen
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris 75005, France
| |
Collapse
|
8
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
9
|
Mattedi F, Lloyd-Morris E, Hirth F, Vagnoni A. Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila. PLoS Biol 2023; 21:e3002273. [PMID: 37590319 PMCID: PMC10465005 DOI: 10.1371/journal.pbio.3002273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Wu Y, Ding C, Weinreb A, Manning L, Swaim G, Yogev S, Colón-Ramos DA, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548706. [PMID: 37502914 PMCID: PMC10369933 DOI: 10.1101/2023.07.12.548706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mitochondria transport is crucial for mitochondria distribution in axons and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 recruitment to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1 and metaxin2. We conclude that polarized transport complexes containing kinesin-1 and RIC-7 form at the leading edge of mitochondria, and that these complexes are required for anterograde axonal transport.
Collapse
Affiliation(s)
- Youjun Wu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Chen Ding
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Alexis Weinreb
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Laura Manning
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Grace Swaim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
11
|
Di Iorio D, Bergmann J, Higashi SL, Hoffmann A, Wegner SV. A disordered tether to iLID improves photoswitchable protein patterning on model membranes. Chem Commun (Camb) 2023; 59:4380-4383. [PMID: 36946614 DOI: 10.1039/d3cc00709j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Reversible protein patterning on model membranes is important to reproduce spatiotemporal protein dynamics in vitro. An engineered version of iLID, disiLID, with a disordered domain as a membrane tether improves the recruitment of Nano under blue light and the reversibility in the dark, which enables protein patterning on membranes with higher spatiotemporal precision.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Johanna Bergmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Sayuri L Higashi
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Arne Hoffmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| |
Collapse
|
12
|
Fernández Casafuz AB, De Rossi MC, Bruno L. Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks. Sci Rep 2023; 13:4065. [PMID: 36906690 PMCID: PMC10008531 DOI: 10.1038/s41598-023-31121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The interactions between mitochondria and the cytoskeleton have been found to alter mitochondrial function; however, the mechanisms underlying this phenomenon are largely unknown. Here, we explored how the integrity of the cytoskeleton affects the cellular organization, morphology and mobility of mitochondria in Xenopus laevis melanocytes. Cells were imaged in control condition and after different treatments that selectively affect specific cytoskeletal networks (microtubules, F-actin and vimentin filaments). We observed that mitochondria cellular distribution and local orientation rely mostly on microtubules, positioning these filaments as the main scaffolding of mitochondrial organization. We also found that cytoskeletal networks mold mitochondria shapes in distinct ways: while microtubules favor more elongated organelles, vimentin and actin filaments increase mitochondrial bending, suggesting the presence of mechanical interactions between these filaments and mitochondria. Finally, we identified that microtubule and F-actin networks play opposite roles in mitochondria shape fluctuations and mobility, with microtubules transmitting their jittering to the organelles and F-actin restricting the organelles motion. All our results support that cytoskeleton filaments interact mechanically with mitochondria and transmit forces to these organelles molding their movements and shapes.
Collapse
Affiliation(s)
- Agustina Belén Fernández Casafuz
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina
| | - María Cecilia De Rossi
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, 1428, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Luciana Bruno
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Jo Y, Woo JS, Lee AR, Lee SY, Shin Y, Lee LP, Cho ML, Kang T. Inner-Membrane-Bound Gold Nanoparticles as Efficient Electron Transfer Mediators for Enhanced Mitochondrial Electron Transport Chain Activity. NANO LETTERS 2022; 22:7927-7935. [PMID: 36137175 DOI: 10.1021/acs.nanolett.2c02957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.
Collapse
Affiliation(s)
- Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Luke P Lee
- Harvard Medical School, Harvard University; Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-La Cho
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Scieneces, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|