1
|
Tandon A, Santura A, Waldmann H, Pahl A, Czodrowski P. Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data. RSC Med Chem 2024; 15:2677-2691. [PMID: 39149097 PMCID: PMC11324048 DOI: 10.1039/d4md00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024] Open
Abstract
Lysosomotropism is a phenomenon of diverse pharmaceutical interests because it is a property of compounds with diverse chemical structures and primary targets. While it is primarily reported to be caused by compounds having suitable lipophilicity and basicity values, not all compounds that fulfill such criteria are in fact lysosomotropic. Here, we use morphological profiling by means of the cell painting assay (CPA) as a reliable surrogate to identify lysosomotropism. We noticed that only 35% of the compound subset with matching physicochemical properties show the lysosomotropic phenotype. Based on a matched molecular pair analysis (MMPA), no key substructures driving lysosomotropism could be identified. However, using explainable machine learning (XML), we were able to highlight that higher lipophilicity, basicity, molecular weight, and lower topological polar surface area are among the important properties that induce lysosomotropism in the compounds of this subset.
Collapse
Affiliation(s)
- Aishvarya Tandon
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Anna Santura
- Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Axel Pahl
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Paul Czodrowski
- Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
2
|
Pahl A, Grygorenko OO, Kondratov IS, Waldmann H. Identification of readily available pseudo-natural products. RSC Med Chem 2024; 15:2709-2717. [PMID: 39149091 PMCID: PMC11324060 DOI: 10.1039/d4md00310a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Pseudo-natural products (PNPs) combine fragments derived from NPs in ways that are not found in nature, and may lead to the discovery of novel chemotypes for unexpected targets or the identification of unprecedented bioactivities. PNPs have increasingly been explored in recent drug discovery programs, and are strongly enriched in clinical compounds. We describe how a large number of structurally different PNPs can be accessed readily and without the need to execute labor- and time intensive synthesis programs. We employed an improved version of the previously reported natural product fragment combination (NPFC) tool to analyze the full library of 3.5 M synthetic small molecules and screening libraries from Enamine for PNP content, assessed the spatial complexity of Enamine-PNPs using the recently developed normalized spatial score (nSPS) and evaluated the bioactivity of a selected subset of Enamine-PNPs in the unbiased morphological cell painting assay. A major fraction (32%; 1.1 million compounds) of the Enamine library are PNPs which contain a significant number of compounds with unexpected and probably new bioactivity.
Collapse
Affiliation(s)
- Axel Pahl
- Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Oleksandr O Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyïv 01601 Ukraine
| | - Ivan S Kondratov
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine Akademik Kukhar Street 1 Kyïv 02660 Ukraine
- Enamine Germany GmbH, Industriepark Hoechst G837 65926 Frankfurt am Main Germany https://www.enamine.de
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
3
|
Rezaei Adariani S, Agne D, Koska S, Burhop A, Seitz C, Warmers J, Janning P, Metz M, Pahl A, Sievers S, Waldmann H, Ziegler S. Detection of a Mitochondrial Fragmentation and Integrated Stress Response Using the Cell Painting Assay. J Med Chem 2024; 67:13252-13270. [PMID: 39018123 PMCID: PMC11320566 DOI: 10.1021/acs.jmedchem.4c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Mitochondria are cellular powerhouses and are crucial for cell function. However, they are vulnerable to internal and external perturbagens that may impair mitochondrial function and eventually lead to cell death. In particular, small molecules may impact mitochondrial function, and therefore, their influence on mitochondrial homeostasis is at best assessed early on in the characterization of biologically active small molecules and drug discovery. We demonstrate that unbiased morphological profiling by means of the cell painting assay (CPA) can detect mitochondrial stress coupled with the induction of an integrated stress response. This activity is common for compounds addressing different targets, is not shared by direct inhibitors of the electron transport chain, and enables prediction of mitochondrial stress induction for small molecules that are profiled using CPA.
Collapse
Affiliation(s)
- Soheila Rezaei Adariani
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Daya Agne
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sandra Koska
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Annina Burhop
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Carina Seitz
- Compound
Management and Screening Center, Max Planck
Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Jens Warmers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Petra Janning
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Malte Metz
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Compound
Management and Screening Center, Max Planck
Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sonja Sievers
- Compound
Management and Screening Center, Max Planck
Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Slava Ziegler
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| |
Collapse
|
4
|
Pahl A, Liu J, Patil S, Rezaei Adariani S, Schölermann B, Warmers J, Bonowski J, Koska S, Akbulut Y, Seitz C, Sievers S, Ziegler S, Waldmann H. Illuminating Dark Chemical Matter Using the Cell Painting Assay. J Med Chem 2024; 67:8862-8876. [PMID: 38687818 PMCID: PMC11181314 DOI: 10.1021/acs.jmedchem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Screening for small-molecule modulators of disease-relevant targets and phenotypes is the first step on the way to new drugs. Large compound libraries have been synthesized by academia and, particularly, pharmaceutical companies to meet the need for novel chemical entities that are as diverse as possible. Screening of these compound libraries revealed a portion of small molecules that is inactive in more than 100 different assays and was therefore termed "dark chemical matter" (DCM). Deorphanization of DCM promises to yield very selective compounds as they are expected to have less off-target effects. We employed morphological profiling using the Cell Painting assay to detect bioactive DCM. Within the DCM collection, we identified bioactive compounds and confirmed several modulators of microtubules, DNA synthesis, and pyrimidine biosynthesis. Profiling approaches are, therefore, powerful tools to probe compound collections for bioactivity in an unbiased manner and are particularly suitable for deorphanization of DCM.
Collapse
Affiliation(s)
- Axel Pahl
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Jie Liu
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sohan Patil
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Soheila Rezaei Adariani
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Technical
University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Jens Warmers
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Technical
University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jana Bonowski
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sandra Koska
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Yasemin Akbulut
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Carina Seitz
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Technical
University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| |
Collapse
|
5
|
Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592531. [PMID: 38766203 PMCID: PMC11100607 DOI: 10.1101/2024.05.04.592531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other - omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.
Collapse
Affiliation(s)
- Srijit Seal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Shantanu Singh
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nigel Greene
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Anne E. Carpenter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
6
|
Pahl I, Pahl A, Hauk A, Budde D, Sievers S, Fruth L, Menzel R. Assessing biologic/toxicologic effects of extractables from plastic contact materials for advanced therapy manufacturing using cell painting assay and cytotoxicity screening. Sci Rep 2024; 14:5933. [PMID: 38467674 PMCID: PMC10928227 DOI: 10.1038/s41598-024-55952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Plastic components are essential in the pharmaceutical industry, encompassing container closure systems, laboratory handling equipment, and single-use systems. As part of their material qualification process, studies on interactions between plastic contact materials and process solutions or drug products are conducted. The assessment of single-use systems includes their potential impact on patient safety, product quality, and process performance. This is particularly crucial in cell and gene therapy applications since interactions with the plastic contact material may result in an adverse effect on the isolated therapeutic human cells. We utilized the cell painting assay (CPA), a non-targeted method, for profiling the morphological characteristics of U2OS human osteosarcoma cells in contact with chemicals related to plastic contact materials. Specifically, we conducted a comprehensive analysis of 45 common plastic extractables, and two extracts from single-use systems. Results of the CPA are compared with a standard cytotoxicity assay, an osteogenesis differentiation assay, and in silico toxicity predictions. The findings of this feasibility study demonstrate that the device extracts and most of the tested compounds do not evoke any measurable biological changes on the cells (induction ≤ 5%) among the 579 cell features measured at concentrations ≤ 50 µM. CPA can serve as an important assay to reveal unique information not accessible through quantitative structure-activity relationship analysis and vice versa. The results highlight the need for a combination of in vitro and in silico methods in a comprehensive assessment of single-use equipment utilized in advanced therapy medicinal products manufacturing.
Collapse
Affiliation(s)
- Ina Pahl
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany.
| | - Axel Pahl
- Compound Management and Screening Center, MPI of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Armin Hauk
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| | - Dana Budde
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| | - Sonja Sievers
- Compound Management and Screening Center, MPI of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Lothar Fruth
- Tox Expert GmbH, An der Feldscheide 1, 37083, Göttingen, Germany
| | - Roberto Menzel
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| |
Collapse
|
7
|
Aoyama H, Davies C, Liu J, Pahl A, Kirchhoff JL, Scheel R, Sievers S, Strohmann C, Grigalunas M, Waldmann H. Collective Synthesis of Sarpagine and Macroline Alkaloid-Inspired Compounds. Chemistry 2024; 30:e202303027. [PMID: 37755456 DOI: 10.1002/chem.202303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e. biology-oriented synthesis and pseudo-natural products. The divergent intermediate was subjected to acid-catalyzed or newly discovered Sn-mediated conditions to selectively promote intramolecular C- or N-acylation, respectively. After further derivatization, a collection totalling 84 compounds representing four classes was obtained. Morphological profiling via the cell painting assay coupled with a subprofile analysis showed that compounds derived from different design principles have different bioactivity profiles. The subprofile analysis suggested that a pseudo-natural product class is enriched in modulators of tubulin, and subsequent assays led to the identification of compounds that suppress in vitro tubulin polymerization and mitotic progression.
Collapse
Affiliation(s)
- Hikaru Aoyama
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Compound Management and Screening Center, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Compound Management and Screening Center, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, 44227, Dortmund, Germany
| |
Collapse
|
8
|
Ng A, Offensperger F, Cisneros JA, Scholes NS, Malik M, Villanti L, Rukavina A, Ferrada E, Hannich JT, Koren A, Kubicek S, Superti-Furga G, Winter GE. Discovery of Molecular Glue Degraders via Isogenic Morphological Profiling. ACS Chem Biol 2023; 18:2464-2473. [PMID: 38098458 PMCID: PMC10764104 DOI: 10.1021/acschembio.3c00598] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Molecular glue degraders (MGDs) are small molecules that degrade proteins of interest via the ubiquitin-proteasome system. While MGDs were historically discovered serendipitously, approaches for MGD discovery now include cell-viability-based drug screens or data mining of public transcriptomics and drug response datasets. These approaches, however, have target spaces restricted to the essential proteins. Here we develop a high-throughput workflow for MGD discovery that also reaches the nonessential proteome. This workflow begins with the rapid synthesis of a compound library by sulfur(VI) fluoride exchange chemistry coupled to a morphological profiling assay in isogenic cell lines that vary in levels of the E3 ligase CRBN. By comparing the morphological changes induced by compound treatment across the isogenic cell lines, we were able to identify FL2-14 as a CRBN-dependent MGD targeting the nonessential protein GSPT2. We envision that this workflow would contribute to the discovery and characterization of MGDs that target a wider range of proteins.
Collapse
Affiliation(s)
- Amanda Ng
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Fabian Offensperger
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Jose A. Cisneros
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Natalie S. Scholes
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Monika Malik
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Ludovica Villanti
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Andrea Rukavina
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Evandro Ferrada
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - J. Thomas Hannich
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Anna Koren
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
9
|
Xie J, Pahl A, Krzyzanowski A, Krupp A, Liu J, Koska S, Schölermann B, Zhang R, Bonowski J, Sievers S, Strohmann C, Ziegler S, Grigalunas M, Waldmann H. Synthetic Matching of Complex Monoterpene Indole Alkaloid Chemical Space. Angew Chem Int Ed Engl 2023; 62:e202310222. [PMID: 37818743 DOI: 10.1002/anie.202310222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are endowed with high structural and spatial complexity and characterized by diverse biological activities. Given this complexity-activity combination in MIAs, rapid and efficient access to chemical matter related to and with complexity similar to these alkaloids would be highly desirable, since such compound classes might display novel bioactivity. We describe the design and synthesis of a pseudo-natural product (pseudo-NP) collection obtained by the unprecedented combination of MIA fragments through complexity-generating transformations, resulting in arrangements not currently accessible by biosynthetic pathways. Cheminformatic analyses revealed that both the pseudo-NPs and the MIAs reside in a unique and common area of chemical space with high spatial complexity-density that is only sparsely populated by other natural products and drugs. Investigation of bioactivity guided by morphological profiling identified pseudo-NPs that inhibit DNA synthesis and modulate tubulin. These results demonstrate that the pseudo-NP collection occupies similar biologically relevant chemical space that Nature has endowed MIAs with.
Collapse
Affiliation(s)
- Jianing Xie
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Compound Management and Screening Center (COMAS), Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Adrian Krzyzanowski
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Anna Krupp
- Faculty of Chemistry, Inorganic Chemistry, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Jie Liu
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Sandra Koska
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Beate Schölermann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Jana Bonowski
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Compound Management and Screening Center (COMAS), Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Slava Ziegler
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Hoock JGF, Rossetti C, Bilgin M, Depta L, Enemark-Rasmussen K, Christianson JC, Laraia L. Identification of non-conventional small molecule degraders and stabilizers of squalene synthase. Chem Sci 2023; 14:12973-12983. [PMID: 38023519 PMCID: PMC10664564 DOI: 10.1039/d3sc04064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Squalene synthase (SQS) is an essential enzyme in the mevalonate pathway, which controls cholesterol biosynthesis and homeostasis. Although catalytic inhibitors of SQS have been developed, none have been approved for therapeutic use so far. Herein we sought to develop SQS degraders using targeted protein degradation (TPD) to lower overall cellular cholesterol content. We found that KY02111, a small molecule ligand of SQS, selectively causes SQS to degrade in a proteasome-dependent manner. Unexpectedly, compounds based on the same scaffold linked to E3 ligase recruiting ligands led to SQS stabilization. Proteomic analysis found KY02111 to reduce only the levels of SQS, while lipidomic analysis determined that KY02111-induced degradation lowered cellular cholesteryl ester content. Stabilizers shielded SQS from its natural turnover without recruiting their matching E3 ligase or affecting enzymatic target activity. Our work shows that degradation of SQS is possible despite a challenging biological setting and provides the first chemical tools to degrade and stabilize SQS.
Collapse
Affiliation(s)
- Joseph G F Hoock
- Department of Chemistry, Technical University of Denmark Kemitorvet 207 Kongens Lyngby 2800 Denmark
| | - Cecilia Rossetti
- Department of Chemistry, Technical University of Denmark Kemitorvet 207 Kongens Lyngby 2800 Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute Strandboulevarden 49 Copenhagen 2100 Denmark
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark Kemitorvet 207 Kongens Lyngby 2800 Denmark
| | - Kasper Enemark-Rasmussen
- Department of Chemistry, Technical University of Denmark Kemitorvet 207 Kongens Lyngby 2800 Denmark
| | - John C Christianson
- Nuffield Department of Rheumatology, Orthopaedics, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford Headington Oxford OX3 7LD UK
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark Kemitorvet 207 Kongens Lyngby 2800 Denmark
| |
Collapse
|
11
|
Pahl A, Schölermann B, Lampe P, Rusch M, Dow M, Hedberg C, Nelson A, Sievers S, Waldmann H, Ziegler S. Morphological subprofile analysis for bioactivity annotation of small molecules. Cell Chem Biol 2023:S2451-9456(23)00159-9. [PMID: 37385259 DOI: 10.1016/j.chembiol.2023.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Abstract
Fast prediction of the mode of action (MoA) for bioactive compounds would immensely foster bioactivity annotation in compound collections and may early on reveal off-targets in chemical biology research and drug discovery. Morphological profiling, e.g., using the Cell Painting assay, offers a fast, unbiased assessment of compound activity on various targets in one experiment. However, due to incomplete bioactivity annotation and unknown activities of reference compounds, prediction of bioactivity is not straightforward. Here we introduce the concept of subprofile analysis to map the MoA for both, reference and unexplored compounds. We defined MoA clusters and extracted cluster subprofiles that contain only a subset of morphological features. Subprofile analysis allows for the assignment of compounds to, currently, twelve targets or MoA. This approach enables rapid bioactivity annotation of compounds and will be extended to further clusters in the future.
Collapse
Affiliation(s)
- Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Philipp Lampe
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Marion Rusch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Mark Dow
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Hedberg
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
12
|
Liu J, Mallick S, Xie Y, Grassin C, Lucas B, Schölermann B, Pahl A, Scheel R, Strohmann C, Protzel C, Berg T, Merten C, Ziegler S, Waldmann H. Morphological Profiling Identifies the Motor Protein Eg5 as Cellular Target of Spirooxindoles. Angew Chem Int Ed Engl 2023; 62:e202301955. [PMID: 36929571 DOI: 10.1002/anie.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Oxindoles and iso-oxindoles are natural product-derived scaffolds that provide inspiration for the design and synthesis of novel biologically relevant compound classes. Notably, the spirocyclic connection of oxindoles with iso-oxindoles has not been explored by nature but promises to provide structurally related compounds endowed with novel bioactivity. Therefore, methods for their efficient synthesis and the conclusive discovery of their cellular targets are highly desirable. We describe a selective RhIII -catalyzed scaffold-divergent synthesis of spirooxindole-isooxindoles and spirooxindole-oxindoles from differently protected diazooxindoles and N-pivaloyloxy aryl amides which includes a functional group-controlled Lossen rearrangement as key step. Unbiased morphological profiling of a corresponding compound collection in the Cell Painting assay efficiently identified the mitotic kinesin Eg5 as the cellular target of the spirooxindoles, defining a unique Eg5 inhibitor chemotype.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Yusheng Xie
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Corentin Grassin
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Belén Lucas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Compound Management and Screening Center, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Christoph Protzel
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Merten
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| |
Collapse
|
13
|
Okolo EA, Pahl A, Sievers S, Pask CM, Nelson A, Marsden SP. Scaffold Remodelling of Diazaspirotricycles Enables Synthesis of Diverse sp 3 -Rich Compounds With Distinct Phenotypic Effects. Chemistry 2023; 29:e202203992. [PMID: 36722618 PMCID: PMC10946999 DOI: 10.1002/chem.202203992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A 'top down' scaffold remodelling approach to library synthesis was applied to spirotricyclic ureas prepared by a complexity-generating oxidative dearomatisation. Eighteen structurally-distinct, sp3 -rich scaffolds were accessed from the parent tricycle through ring addition, cleavage and expansion strategies. Biological screening of a small compound library based on these scaffolds using the cell-painting assay demonstrated distinctive phenotypic responses engendered by different library members, illustrating the functional as well as structural diversity of the compounds.
Collapse
Affiliation(s)
| | - Axel Pahl
- Max-Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 11Dortmund44227Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 11Dortmund44227Germany
| | | | - Adam Nelson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
14
|
Whitmarsh-Everiss T, Wang Z, Hauberg Hansen C, Depta L, Sassetti E, Rafn Dan O, Pahl A, Sievers S, Laraia L. Identification of Biologically Diverse Tetrahydronaphthalen-2-ols through the Synthesis and Phenotypic Profiling of Chemically Diverse, Estradiol-Inspired Compounds. Chembiochem 2023; 24:e202200555. [PMID: 36594441 DOI: 10.1002/cbic.202200555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Combining natural product fragments to design new scaffolds with unprecedented bioactivity is a powerful strategy for the discovery of tool compounds and potential therapeutics. However, the choice of fragments to couple and the biological screens to employ remain open questions in the field. By choosing a primary fragment containing the A/B ring system of estradiol and fusing it to nine different secondary fragments, we were able to identify compounds that modulated four different phenotypes: inhibition of autophagy and osteoblast differentiation, as well as potassium channel and tubulin modulation. The latter two were uncovered by using unbiased morphological profiling with a cell-painting assay. The number of hits and variety in bioactivity discovered validates the use of recombining natural product fragments coupled to phenotypic screening for the rapid identification of biologically diverse compounds.
Collapse
Affiliation(s)
- Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| | - Zhou Wang
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| | - Cecilie Hauberg Hansen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| | - Elisa Sassetti
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| | - Oliver Rafn Dan
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
15
|
Schölermann B, Bonowski J, Grigalunas M, Burhop A, Xie Y, Hoock JGF, Liu J, Dow M, Nelson A, Nowak C, Pahl A, Sievers S, Ziegler S. Identification of Dihydroorotate Dehydrogenase Inhibitors Using the Cell Painting Assay. Chembiochem 2022; 23:e202200475. [PMID: 36134475 PMCID: PMC9828254 DOI: 10.1002/cbic.202200475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Indexed: 02/03/2023]
Abstract
Profiling approaches have been increasingly employed for the characterization of disease-relevant phenotypes or compound perturbation as they provide a broad, unbiased view on impaired cellular states. We report that morphological profiling using the cell painting assay (CPA) can detect modulators of de novo pyrimidine biosynthesis and of dihydroorotate dehydrogenase (DHODH) in particular. The CPA can differentiate between impairment of pyrimidine and folate metabolism, which both affect cellular nucleotide pools. The identified morphological signature is shared by inhibitors of DHODH and the functionally tightly coupled complex III of the mitochondrial respiratory chain as well as by UMP synthase, which is downstream of DHODH. The CPA appears to be particularly suited for the detection of DHODH inhibitors at the site of their action in cells. As DHODH is a validated therapeutic target, the CPA will enable unbiased identification of DHODH inhibitors and inhibitors of de novo pyrimidine biosynthesis for biological research and drug discovery.
Collapse
Affiliation(s)
- Beate Schölermann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Jana Bonowski
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Annina Burhop
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Yusheng Xie
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Joseph G. F. Hoock
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Jie Liu
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Mark Dow
- School of Chemistry andAstbury Centre for Structural Molecular BiologyUniversity of LeedsLS2 9JTLeedsUK
| | - Adam Nelson
- School of Chemistry andAstbury Centre for Structural Molecular BiologyUniversity of LeedsLS2 9JTLeedsUK
| | - Christine Nowak
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
- Compound Management and Screening Center44227DortmundGermany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
- Compound Management and Screening Center44227DortmundGermany
| | - Slava Ziegler
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical Biology44227DortmundGermany
| |
Collapse
|
16
|
Trapotsi MA, Mouchet E, Williams G, Monteverde T, Juhani K, Turkki R, Miljković F, Martinsson A, Mervin L, Pryde KR, Müllers E, Barrett I, Engkvist O, Bender A, Moreau K. Cell Morphological Profiling Enables High-Throughput Screening for PROteolysis TArgeting Chimera (PROTAC) Phenotypic Signature. ACS Chem Biol 2022; 17:1733-1744. [PMID: 35793809 PMCID: PMC9295119 DOI: 10.1021/acschembio.2c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest for therapeutic benefit. Advances made in targeted protein degradation technology have been remarkable, with several molecules having moved into clinical studies. However, robust routes to assess and better understand the safety risks of PROTACs need to be identified, which is an essential step toward delivering efficacious and safe compounds to patients. In this work, we used Cell Painting, an unbiased high-content imaging method, to identify phenotypic signatures of PROTACs. Chemical clustering and model prediction allowed the identification of a mitotoxicity signature that could not be expected by screening the individual PROTAC components. The data highlighted the benefit of unbiased phenotypic methods for identifying toxic signatures and the potential to impact drug design.
Collapse
Affiliation(s)
- Maria-Anna Trapotsi
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Elizabeth Mouchet
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Guy Williams
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Tiziana Monteverde
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Karolina Juhani
- High Throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Riku Turkki
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Filip Miljković
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Anton Martinsson
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Lewis Mervin
- Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Kenneth R Pryde
- Oncology Safety, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Ian Barrett
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kevin Moreau
- Safety Innovation, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|