1
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Richter D, Vagstad AL. A peptide dehydratase with core strength. Nat Chem Biol 2024; 20:546-548. [PMID: 38641754 DOI: 10.1038/s41589-024-01605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Daniel Richter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Anna Lisa Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| |
Collapse
|
3
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Pei ZF, Zhu L, Nair SK. Core-dependent post-translational modifications guide the biosynthesis of a new class of hypermodified peptides. Nat Commun 2023; 14:7734. [PMID: 38007494 PMCID: PMC10676384 DOI: 10.1038/s41467-023-43604-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
The ribosomally synthesized and post-translationally modified peptide (RiPPs) class of natural products has undergone significant expansion due to the rapid growth in genome sequencing data. Using a bioinformatics approach, we identify the dehydrazoles, a novel class of hypermodified RiPPs that contain both side chain dehydration of Ser residues, and backbone heterocyclization at Ser, Thr, and Cys residues to the corresponding azol(in)es. Structure elucidation of the hypermodified peptide carnazolamide, a representative class member, shows that 18 post-translational modifications are installed by just five enzymes. Complete biosynthetic reconstitution demonstrates that dehydration is carried out by an unusual DUF4135 dehydration domain fused to a zinc-independent cyclase domain (CcaM). We demonstrate that CcaM only modifies Ser residues that precede an azole in the core peptide. As heterocyclization removes the carbonyl following the Ser residue, CcaM likely catalyzes dehydration without generating an enolate intermediate. Additionally, CcaM does not require the leader peptide, and this core-dependence effectively sets the order for the biosynthetic reactions. Biophysical studies demonstrate direct binding of azoles to CcaM consistent with this azole moiety-dependent dehydration. Bioinformatic analysis reveals more than 50 related biosynthetic gene clusters that contain additional catalysts that may produce structurally diverse scaffolds.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences, NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Zhong G. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:371-388. [PMID: 37876494 PMCID: PMC10591300 DOI: 10.1021/acsbiomedchemau.3c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 10/26/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of exponentially increased natural products with characteristic chemical structures, topologies, and biosynthetic mechanisms as well as exceptional bioactivities including antibacteria, antitumors, and antiviruses. The biosynthesis of RiPP proceeds via a ribosomally assembled precursor peptide that undergoes varied post-translational modifications to generate a mature peptide. Cytochrome P450 (CYP or P450) monooxygenases are a superfamily of heme-containing enzymes that span a wide range of secondary metabolite biosynthetic pathways due to their broad substrate scopes and excellent catalytic versatility. In contrast to the enormous quantities of RiPPs and P450s, the P450 associated RiPP biosynthesis is comparatively limited, with most of their functions and timings remaining mysterious. Herein, this Review aims to provide an overview on the striking roles of P450s in RiPP biosyntheses uncovered to date and to illustrate their remarkable functions, mechanisms, as well as remaining challenges. This will shed light on novel P450 discovery and characterizations in RiPP biosyntheses.
Collapse
Affiliation(s)
- Guannan Zhong
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
6
|
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:1-31. [PMID: 37101606 PMCID: PMC10125368 DOI: 10.1021/acsbiomedchemau.2c00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 04/28/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.
Collapse
Affiliation(s)
- Guannan Zhong
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| | - Zong-Jie Wang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liujie Huo
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|