1
|
Gorecki L, Reznickova E, Krystof V, Rezacova M, Ceckova M, Korabecny J. Strategies for the treatment of acute myeloid leukemia with FLT3 mutations: a patent review. Expert Opin Ther Pat 2025:1-28. [PMID: 39718422 DOI: 10.1080/13543776.2024.2446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Approximately one-third of all AML patients have a mutation in the Fms-like tyrosine kinase 3 (FLT3) gene, which is associated with a poor prognosis in these individuals. The 2017 approval of midostaurin, the first FLT3 inhibitor, spurred extensive development of more potent and selective inhibitors with an improved safety profile. AREAS COVERED This review analyzes patent inventions for the treatment of AML using FLT3 inhibitors, covering developments from the earliest to the most recent, disclosed in 2024. Our search using the global Espacenet database identified numerous compounds with low nanomolar inhibitory concentrations against FLT3-ITD and FLT3-TKD mutants. These compounds have shown promise in preclinical studies. Co-inhibition strategies and combinatorial therapies to overcome resistance and enhance anti-leukemic efficacy are also discussed. EXPERT OPINION Recent patents highlight advances in the field of FLT3 inhibitors with a focus on overcoming resistance, improving selectivity and potency. Future strategies may include third-generation inhibitors such as type III allosteric inhibitors, irreversible inhibitors, or PROTACs. Personalized medicine approaches utilizing genetic profiling to tailor therapies are emphasized. Exploration of novel combination regimens with emerging therapies like CAR T-cell therapy, immune checkpoint inhibitors, and small molecules targeting critical AML pathways is ongoing to further enhance anti-leukemic efficacy.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Reznickova
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Moradi M, Mousavi A, Řezníčková E, Peytam F, Peřina M, Vojáčková V, Firoozpour L, Jorda R, Grúz J, Emamgholipour Z, Sadat-Ebrahimi SE, Kryštof V, Foroumadi A. Identification of furo[2,3-d]pyrimidin-4-ylsulfanyl-1,3,4-thiadiazole derivatives as novel FLT3-ITD inhibitors. Eur J Med Chem 2024; 280:116962. [PMID: 39427515 DOI: 10.1016/j.ejmech.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Given the significant prevalence of FLT3 receptor and its mutations in acute myeloid leukemia (AML) pathogenesis, we present a novel series of furo[2,3-d]pyrimidin-1,3,4-thiadiazole-urea derivatives, designed to exhibit FLT3-ITD inhibitory activity. These compounds demonstrated cytotoxicity in FLT3-ITD expressing AML cell lines MOLM-13 and MV4-11 in the nanomolar range, with significant selectivity over the K562 cell line. In-depth evaluations of example compound 49 revealed its efficacy in suppressing FLT3 phosphorylation and the downstream signaling molecules, including STAT5 and ERK1/2. Notably, compound 49 demonstrated cytotoxic effects in Ba/F3 cells expressing FLT3-ITD or FLT3-ITD-F691L mutant, exceeding the potency of both sorafenib and quizartinib. Molecular docking studies suggest that this compound binds to the active site of FLT3 in a type II manner. The study suggests that substituted furo[2,3-d]pyrimidines could be useful additions to the growing field of FLT3-targeted therapy for AML. These compounds have the potential to serve as novel FLT3-ITD inhibitors and may offer insights for developing future therapeutic strategies in AML.
Collapse
Affiliation(s)
- Mahfam Moradi
- International Campus-School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- International Campus-School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jiří Grúz
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Halilovic M, Abdelsalam M, Zabkiewicz J, Lazenby M, Alvares C, Schmidt M, Brenner W, Najafi S, Oehme I, Hieber C, Zeyn Y, Bros M, Sippl W, Krämer OH. Selective degradation of mutant FMS-like tyrosine kinase-3 requires BIM-dependent depletion of heat shock proteins. Leukemia 2024; 38:2561-2572. [PMID: 39300221 PMCID: PMC11588663 DOI: 10.1038/s41375-024-02405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Internal tandem duplications in the FMS-like tyrosine kinase-3 (FLT3-ITD) are common mutations in acute myeloid leukemia (AML). Proteolysis-targeting chimeras (PROTACs) that induce proteasomal degradation of mutated FLT3 emerge as innovative pharmacological approach. Molecular mechanisms that control targeted proteolysis beyond the ubiquitin-proteasome-system are undefined and PROTACs are the only known type of FLT3 degraders. We report that the von-Hippel-Lindau ubiquitin-ligase based FLT3 PROTAC MA49 (melotinib-49) and the FLT3 hydrophobic tagging molecule MA50 (halotinib-50) reduce endoplasmic reticulum-associated, oncogenic FLT3-ITD but spare FLT3. Nanomolar doses of MA49 and MA50 induce apoptosis of human leukemic cell lines and primary AML blasts with FLT3-ITD (p < 0.05-0.0001), but not of primary hematopoietic stem cells and differentiated immune cells, FLT3 wild-type cells, retinal cells, and c-KIT-dependent cells. In vivo activity of MA49 against FLT3-ITD-positive leukemia cells is verified in a Danio rerio model. The degrader-induced loss of FLT3-ITD involves the pro-apoptotic BH3-only protein BIM and a previously unidentified degrader-induced depletion of protein-folding chaperones. The expression levels of HSP90 and HSP110 correlate with reduced AML patient survival (p < 0.1) and HSP90, HSP110, and BIM are linked to the expression of FLT3 in primary AML cells (p < 0.01). HSP90 suppresses degrader-induced FLT3-ITD elimination and thereby establishes a mechanistically defined feed-back circuit.
Collapse
Affiliation(s)
- Melisa Halilovic
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany
| | - Mohamed Abdelsalam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany
| | - Joanna Zabkiewicz
- Academic Department of Haematology, University of Cardiff, Heath Park, Cardiff, UK
| | - Michelle Lazenby
- Academic Department of Haematology, University of Cardiff, Heath Park, Cardiff, UK
| | - Caroline Alvares
- Academic Department of Haematology, University of Cardiff, Heath Park, Cardiff, UK
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women's Health, University Medical Center, 55131, Mainz, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Christoph Hieber
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Hieber C, Mustafa AHM, Neuroth S, Henninger S, Wollscheid HP, Zabkiewicz J, Lazenby M, Alvares C, Mahboobi S, Butter F, Brenner W, Bros M, Krämer OH. Inhibitors of the tyrosine kinases FMS-like tyrosine kinase-3 and WEE1 induce apoptosis and DNA damage synergistically in acute myeloid leukemia cells. Biomed Pharmacother 2024; 177:117076. [PMID: 38971011 DOI: 10.1016/j.biopha.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.
Collapse
Affiliation(s)
- Christoph Hieber
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany; Department of Dermatology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | - Al-Hassan M Mustafa
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
| | - Sarah Neuroth
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | - Sven Henninger
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | | | - Joanna Zabkiewicz
- Department of Haematology, Cardiff Experimental Cancer Medicine Centre, Cardiff University, Wales, UK.
| | - Michelle Lazenby
- Department of Haematology, Cardiff Experimental Cancer Medicine Centre, Cardiff University, Wales, UK.
| | - Caroline Alvares
- Department of Haematology, Cardiff Experimental Cancer Medicine Centre, Cardiff University, Wales, UK.
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany.
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, Mainz 55128, Germany; Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, Greifswald 17493, Germany.
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center, Mainz 55131, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| |
Collapse
|
5
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Kansy AG, Ashry R, Mustafa AM, Alfayomy AM, Radsak MP, Zeyn Y, Bros M, Sippl W, Krämer OH. Pharmacological degradation of ATR induces antiproliferative DNA replication stress in leukemic cells. Mol Oncol 2024; 18:1958-1965. [PMID: 38520049 PMCID: PMC11306515 DOI: 10.1002/1878-0261.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Mammalian cells replicate ~ 3 × 109 base pairs per cell cycle. One of the key molecules that slows down the cell cycle and prevents excessive DNA damage upon DNA replication stress is the checkpoint kinase ataxia-telangiectasia-and-RAD3-related (ATR). Proteolysis-targeting-chimeras (PROTACs) are an innovative pharmacological invention to molecularly dissect, biologically understand, and therapeutically assess catalytic and non-catalytic functions of enzymes. This work defines the first-in-class ATR PROTAC, Abd110/Ramotac-1. It is derived from the ATR inhibitor VE-821 and recruits the E3 ubiquitin-ligase component cereblon to ATR. Abd110 eliminates ATR rapidly in human leukemic cells. This mechanism provokes DNA replication catastrophe and augments anti-leukemic effects of the clinically used ribonucleotide reductase-2 inhibitor hydroxyurea. Moreover, Abd110 is more effective than VE-821 against human primary leukemic cells but spares normal primary immune cells. CRISPR-Cas9 screens show that ATR is a dependency factor in 116 myeloid and lymphoid leukemia cells. Treatment of wild-type but not of cereblon knockout cells with Abd110 stalls their proliferation which verifies that ATR elimination is the primary mechanism of Abd110. Altogether, our findings demonstrate specific anti-leukemic effects of an ATR PROTAC.
Collapse
Affiliation(s)
- Anita G. Kansy
- Institute of ToxicologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Ramy Ashry
- Institute of ToxicologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Department of Oral Pathology, Faculty of DentistryMansoura UniversityEgypt
| | - Al‐Hassan M. Mustafa
- Institute of ToxicologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Department of Zoology, Faculty of ScienceAswan UniversityEgypt
| | - Abdallah M. Alfayomy
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther‐University of Halle‐WittenbergHalle (Saale)Germany
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar UniversityAssiutEgypt
| | - Markus P. Radsak
- 3 Department MedicineUniversity Medical Center MainzGermany
- Present address:
Medical Deptpartment VIIDonau‐Isar‐KlinikumDeggendorfGermany.
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center MainzGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center MainzGermany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of PharmacyMartin‐Luther‐University of Halle‐WittenbergHalle (Saale)Germany
| | - Oliver H. Krämer
- Institute of ToxicologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
7
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Zeyn Y, Hausmann K, Halilovic M, Beyer M, Ibrahim HS, Brenner W, Mahboobi S, Bros M, Sippl W, Krämer OH. Histone deacetylase inhibitors modulate hormesis in leukemic cells with mutant FMS-like tyrosine kinase-3. Leukemia 2023; 37:2319-2323. [PMID: 37735559 PMCID: PMC10624624 DOI: 10.1038/s41375-023-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Yanira Zeyn
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Kristin Hausmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-, Wittenberg, Halle (Saale), Germany
| | - Melisa Halilovic
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-, Wittenberg, Halle (Saale), Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-, Wittenberg, Halle (Saale), Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany.
| |
Collapse
|
9
|
Kiweler N, Schwarz H, Nguyen A, Matschos S, Mullins C, Piée-Staffa A, Brachetti C, Roos WP, Schneider G, Linnebacher M, Brenner W, Krämer OH. The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biol Toxicol 2023; 39:2401-2419. [PMID: 35608750 PMCID: PMC10547618 DOI: 10.1007/s10565-022-09731-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.
Collapse
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
- Present Address: Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Helena Schwarz
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alexandra Nguyen
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Christina Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Günter Schneider
- Klinikum Rechts Der Isar, Medical Clinic and Polyclinic II, Technical University Munich, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
10
|
Ashry R, Mustafa AHM, Hausmann K, Linnebacher M, Strand S, Sippl W, Wirth M, Krämer OH. NOXA Accentuates Apoptosis Induction by a Novel Histone Deacetylase Inhibitor. Cancers (Basel) 2023; 15:3650. [PMID: 37509312 PMCID: PMC10377841 DOI: 10.3390/cancers15143650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Epigenetic modifiers of the histone deacetylase (HDAC) family are often dysregulated in cancer cells. Experiments with small molecule HDAC inhibitors (HDACi) have proven that HDACs are a vulnerability of transformed cells. We evaluated a novel hydroxamic acid-based HDACi (KH16; termed yanostat) in human pancreatic ductal adenocarcinoma (PDAC) cells, short- and long-term cultured colorectal cancer (CRC) cells, and retinal pigment epithelial cells. We show that KH16 induces cell cycle arrest and apoptosis, both time and dose dependently in PDAC and CRC cells. This is associated with altered expression of BCL2 family members controlling intrinsic apoptosis. Recent data illustrate that PDAC cells frequently have an altered expression of the pro-apoptotic BH3-only protein NOXA and that HDACi induce an accumulation of NOXA. Using PDAC cells with a deletion of NOXA by CRISPR-Cas9, we found that a lack of NOXA delayed apoptosis induction by KH16. These results suggest that KH16 is a new chemotype of hydroxamic acid HDACi with superior activity against solid tumor-derived cells. Thus, KH16 is a scaffold for future research on compounds with nanomolar activity against HDACs.
Collapse
Affiliation(s)
- Ramy Ashry
- Institute of Toxicology, University Medical Centre Mainz, 55131 Mainz, Germany
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Al-Hassan M Mustafa
- Institute of Toxicology, University Medical Centre Mainz, 55131 Mainz, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Kristin Hausmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Centre Mainz, 55131 Mainz, Germany
| |
Collapse
|
11
|
Beyer M, Krämer OH. RNA interference protocol to silence oncogenic drivers in leukemia cell lines. STAR Protoc 2022; 3:101512. [PMID: 35779262 PMCID: PMC9254495 DOI: 10.1016/j.xpro.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022] Open
Abstract
Genetic silencing of leukemia-associated proteins with small interfering RNAs (siRNAs) is a straightforward way to delineate their functions. It can be very challenging to deliver siRNAs to leukemia-derived cells with high transfection efficiency and without compromising their viability. This protocol describes an efficient approach to silence oncogenic feline McDonough sarcoma (FMS)-like tyrosine kinase-3 in leukemia cells using siRNAs that are delivered by electroporation. The protocol maintains high cell viability and is generally useful to decrease RNAs encoding proteins of interest. For complete details on the use and execution of this protocol, please refer to Beyer et al. (2022). Transient knockdown of proteins in leukemic cells with survival rates around 80% Technique demonstrated through genetic attenuation of the leukemogenic kinase FLT3-ITD Applicability for various cell systems and RNAs/proteins of interest Genetic reduction can be used as a comparison for inhibitor studies
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
12
|
Zeyen P, Zeyn Y, Herp D, Mahmoudi F, Yesiloglu TZ, Erdmann F, Schmidt M, Robaa D, Romier C, Ridinger J, Herbst-Gervasoni CJ, Christianson DW, Oehme I, Jung M, Krämer OH, Sippl W. Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. Eur J Med Chem 2022; 234:114272. [PMID: 35306288 PMCID: PMC9007901 DOI: 10.1016/j.ejmech.2022.114272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 epigenetic modifiers that fall into 4 classes. Histone deacetylase inhibitors (HDACi) are valid tools to assess HDAC functions. HDAC6 and HDAC10 belong to the class IIb subgroup of the HDAC family. The targets and biological functions of HDAC10 are ill-defined. This lack of knowledge is due to a lack of specific and potent HDAC10 inhibitors with cellular activity. Here, we have synthesized and characterized piperidine-4-acrylhydroxamates as potent and highly selective inhibitors of HDAC10. This was achieved by targeting the acidic gatekeeper residue Glu274 of HDAC10 with a basic piperidine moiety that mimics the interaction of the polyamine substrate of HDAC10. We have confirmed the binding modes of selected inhibitors using X-ray crystallography. Promising candidates were selected based on their specificity by in vitro profiling using recombinant HDACs. The most promising HDAC10 inhibitors 10c and 13b were tested for specificity in acute myeloid leukemia (AML) cells with the FLT3-ITD oncogene. By immunoblot experiments we assessed the hyperacetylation of histones and tubulin-α, which are class I and HDAC6 substrates, respectively. As validated test for HDAC10 inhibition we used flow cytometry assessing autolysosome formation in neuroblastoma and AML cells. We demonstrate that 10c and 13b inhibit HDAC10 with high specificity over HDAC6 and with no significant impact on class I HDACs. The accumulation of autolysosomes is not a consequence of apoptosis and 10c and 13b are not toxic for normal human kidney cells. These data show that 10c and 13b are nanomolar inhibitors of HDAC10 with high specificity. Thus, our new HDAC10 inhibitors are tools to identify the downstream targets and functions of HDAC10 in cells.
Collapse
|
13
|
Ibrahim HS, Abdelsalam M, Zeyn Y, Zessin M, Mustafa AHM, Fischer MA, Zeyen P, Sun P, Bülbül EF, Vecchio A, Erdmann F, Schmidt M, Robaa D, Barinka C, Romier C, Schutkowski M, Krämer OH, Sippl W. Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity. Int J Mol Sci 2021; 23:ijms23010369. [PMID: 35008795 PMCID: PMC8745332 DOI: 10.3390/ijms23010369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins.
Collapse
Affiliation(s)
- Hany S. Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
| | - Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Al-Hassan M. Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
- Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Marten A. Fischer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
| | - Patrik Zeyen
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Ping Sun
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Emre F. Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Anita Vecchio
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic;
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, Université de Strasbourg, CEDEX, 67404 Illkirch, France;
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
- Correspondence: (O.H.K.); (W.S.)
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Correspondence: (O.H.K.); (W.S.)
| |
Collapse
|