1
|
Jafri Z, Zhang J, O'Meara CH, Joshua AM, Parish CR, Khachigian LM. Interplay between CD28 and PD-1 in T cell immunotherapy. Vascul Pharmacol 2024:107461. [PMID: 39734005 DOI: 10.1016/j.vph.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionized the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa). CD28 signalling has the potential to counter T cell exhaustion by serving as a potential complementary response to traditional anti-PD-1 therapies. Here we discuss the interplay between PD-1 and CD28 in T cell immunotherapy and additionally how CD28 transcriptionally modulates T cell exhaustion. We also consider clinical attempts at targeting CD28; the challenges faced by past attempts and recent promising developments.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA; Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Li T, Zhao Y, Li K, Li G, Li G. The survival and safety of metastatic hepatocellular carcinoma treated with lenalidomide as second-line therapy: a case report and review of the literature. Front Oncol 2024; 14:1461936. [PMID: 39634262 PMCID: PMC11614724 DOI: 10.3389/fonc.2024.1461936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly lethal and invasive cancer. Targeted and immunotherapies are the primary treatment options for unresectable advanced HCC. There are no recognized and consistent systemic follow-up treatments for patients with HCC who experience disease progression after first-line targeted therapies and immune checkpoint inhibitors (ICIs). According to a few studies, lenalidomide is an immunomodulatory drug that has the potential to be an effective treatment for patients who have progressed after treatment with targeted drugs and ICIs. Case summary This article focuses on a patient with HCC whose disease progressed after first-line targeted therapy and ICI therapy combined with lenalidomide as second-line therapy on the basis of the original targeted and ICI regimens, resulting in a favorable oncologic outcome with acceptable toxicity. The progression-free survival (PFS) of the patients in this study reached 3 years, which is much longer than that previously reported, and no progression has occurred thus far. Conclusions This case implies that in patients with hepatocellular carcinoma who have failed first-line targeted therapy and ICIs, targeted therapy and ICIs can be restarted with the addition of lenalidomide, with surprising results.
Collapse
Affiliation(s)
| | | | | | - Gong Li
- Department of Radiation Oncology, Beijing Tsinghua Changgeng Hospital, Tsinghua University, Beijing, China
| | - Guangxin Li
- Department of Radiation Oncology, Beijing Tsinghua Changgeng Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
4
|
Liu Y, Mo CC, Hartley-Brown MA, Sperling AS, Midha S, Yee AJ, Bianchi G, Piper C, Tattersall A, Nadeem O, Laubach JP, Richardson PG. Targeting Ikaros and Aiolos: reviewing novel protein degraders for the treatment of multiple myeloma, with a focus on iberdomide and mezigdomide. Expert Rev Hematol 2024; 17:445-465. [PMID: 39054911 DOI: 10.1080/17474086.2024.2382897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The treatment of multiple myeloma (MM) is evolving rapidly. Quadruplet regimens incorporating proteasome inhibitors, immunomodulatory drugs (IMiDs), and CD38 monoclonal antibodies have emerged as standard-of-care options for newly diagnosed MM, and numerous novel therapies have been approved for relapsed/refractory MM. However, there remains a need for novel options in multiple settings, including refractoriness to frontline standards of care. AREAS COVERED Targeting degradation of IKZF1 and IKZF3 - Ikaros and Aiolos - through modulation of cereblon, an E3 ligase substrate recruiter/receptor, is a key mechanism of action of the IMiDs and the CELMoD agents. Two CELMoD agents, iberdomide and mezigdomide, have demonstrated substantial preclinical and clinical activity in MM and have entered phase 3 investigation. Using a literature search methodology comprising searches of PubMed (unlimited time-frame) and international hematology/oncology conference abstracts (2019-2023), this paper reviews the importance of Ikaros and Aiolos in MM, the mechanism of action of the IMiDs and CELMoD agents and their relative potency for targeting Ikaros and Aiolos, and preclinical and clinical data on iberdomide and mezigdomide. EXPERT OPINION Emerging data suggest that iberdomide and mezigdomide have promising activity, including in IMiD-resistant settings and, pending phase 3 findings, may provide additional treatment options for patients with MM.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Monique A Hartley-Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shonali Midha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew J Yee
- Massachusetts General Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine Piper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Alice Tattersall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Jacob P Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Chen Y, Shen J, Ling C, Liang Z, Huang S, Lin W, Qin Y, Meng L, Luo Y. Exploring the role of CD8 + T cells in clear renal cell carcinoma metastasis. FEBS Open Bio 2024; 14:1205-1217. [PMID: 38872260 PMCID: PMC11216920 DOI: 10.1002/2211-5463.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for approximately 75-80% of all patients with renal cell carcinoma. Despite its prevalence, little is known regarding the key components involved in ccRCC metastasis. In this study, scRNA-seq analysis was employed to classify CD8+ T cells into four sub-clusters based on their genetic profiles and immunofluorescence experiments were used to validate two key clusters. Through gene set enrichment analysis, these newly identified sub-clusters were found to exhibit distinct biological characteristics. Notably, TYMP, TOP2A, CHI3L2, CDKN3, CENPM, and RZH2 were highly expressed in these sub-clusters, indicating a correlation with poor prognosis. Among these sub-clusters, CD8+ T cells (MT-ND4) were identified as potentially playing a critical role in mediating ccRCC metastasis. These results contribute to our understanding of CD8+ T cell heterogeneity in ccRCC and shed light on the mechanisms underlying the loss of immune response against cancer.
Collapse
Affiliation(s)
- Yuanhong Chen
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
- Department of Pathogenic Biology and ImmunologyYoujiang Medical University for NationalitiesBaiseChina
| | - Jiajia Shen
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
| | - Caixia Ling
- Modern Industrial College of Biomedicine and Great HealthYoujiang Medical University for NationalitiesBaiseChina
| | - Zhengfang Liang
- Department of Urinary SurgeryThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Shaoang Huang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
| | - Wenxian Lin
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
- Department of Interventional OncologyAffiliated Hospital of Youjiang Medical College for NationalitiesBaiseChina
| | - Yujuan Qin
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
| | - Lingzhang Meng
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
- Institute of Cardiovascular SciencesGuangxi Academy of Medical SciencesNanningChina
| | - Yanhong Luo
- Center for Systemic Inflammation Research (CSIR), School of Preclinical MedicineYoujiang Medical University for NationalitiesBaiseChina
- Modern Industrial College of Biomedicine and Great HealthYoujiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
6
|
Kann MC, Schneider EM, Almazan AJ, Lane IC, Bouffard AA, Supper VM, Takei HN, Tepper A, Leick MB, Larson RC, Ebert BL, Maus MV, Jan M. Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7. Leukemia 2024; 38:590-600. [PMID: 38123696 DOI: 10.1038/s41375-023-02113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.
Collapse
Affiliation(s)
- Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio J Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel C Lane
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina M Supper
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hana N Takei
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Tepper
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Blood and Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin L Ebert
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Shah P, Sperling AS. Chimeric Antigen Receptor T Cells in Multiple Myeloma. Hematol Oncol Clin North Am 2023; 37:1089-1105. [PMID: 37563077 DOI: 10.1016/j.hoc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multiple myeloma is the second most common hematological malignancy with an approximate incidence of up to 8.5 cases per 100,000 persons per year. Over the last decade, therapy for multiple myeloma has undergone a revolutionary change. Chimeric antigen receptor (CAR) T-cell therapy has played a major role in this evolution. In this review, we discuss the existing state of CAR T-cell therapy in myeloma while evaluating several newer therapies and targets expected in the near future.
Collapse
Affiliation(s)
- Parth Shah
- Department of Hematology, Dartmouth Cancer Center, 1 Medical Center Drive, Lebanon, NH 03750, USA; Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA.
| | - Adam S Sperling
- Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA; Division of Hematology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Zhang SH, Zeng N, Sun JX, Liu CQ, Xu JZ, Xu MY, An Y, Zhong XY, Ma SY, He HD, Xia QD, Hu J, Wang SG. Pan-cancer analysis reveals the prognostic and immunologic roles of cereblon and its significance for PROTAC design. Heliyon 2023; 9:e16644. [PMID: 37303568 PMCID: PMC10248115 DOI: 10.1016/j.heliyon.2023.e16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cereblon (CRBN) has emerged as a vital E3 ubiquitin ligase for Proteolysis-targeting chimera (PROTAC) design. However, few studies focus on the physiological mechanism of CRBN, and more studies are needed to explore the influence of CRBN on tumorigenesis. This pan-cancer analysis aims to explore the prognostic and immunologic roles of CRBN, and provide new insight for CRBN into cancer treatment and PROTAC design. Methods The TCGA database, TIMER 2.0 database, and TISIDB database were used to analyze the role of CRBN in pan-cancer. Multiple bioinformatic methods (ssGSEA, Kaplan-Meier, univariate cox regression, ESTIMATE, CIBERSORT) were applied to investigate the CRBN expression status, gene activity, prognostic values, and its correlation with immune scores, immune infiltration, immune-related functions, HALLMARKs functions, and response to immunotherapy in pan-cancer. Results In most cancer types, the expression and activity of CRBN in tumor groups were lower compared with normal groups. Upregulated CRBN expression may indicate a better prognosis for cancer patients. The Immune score, stromal score, and tumor purity varied greatly among different cancer types. GSEA analysis showed that high CRBN expression was correlated with the downregulation of tumor-promoting signaling pathways. The level of CRBN was associated with Tumor mutation burden (TMB), Microsatellite instability (MSI), objective response rate (ORR), and immune cell infiltration in a few cancer types. Conclusion Pan-cancer analysis reveals the potential role of CRBN as a prognostic biomarker and versatile immunologic roles in different cancer types. Upregulated expression of CRBN may be beneficial to CRBN-related immunotherapy and PROTAC design.
Collapse
|
9
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Słabicki M, Sperling AS. Repurposing the repurposed: thalidomide analogs as immune stimulants to overcome T cell exhaustion. Cell Chem Biol 2022; 29:1245-1247. [PMID: 35985276 DOI: 10.1016/j.chembiol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this issue of Cell Chemical Biology, Geng and colleagues employ a novel mouse model of humanized cereblon (Crbn) to provide insights into the immunomodulatory effects of lenalidomide and provide rationale for potential therapeutic combinations including anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Adam S Sperling
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|