1
|
Kulesskaya N, Holmström KM, Huttunen HJ. Brain-penetrating neurotrophic factor mimetics: HER-096 as a disease-modifying therapy for Parkinson's disease. Neural Regen Res 2025; 20:1094-1095. [PMID: 38989947 PMCID: PMC11438334 DOI: 10.4103/nrr.nrr-d-24-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
|
2
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Barker RA, Saarma M, Svendsen CN, Morgan C, Whone A, Fiandaca MS, Luz M, Bankiewicz KS, Fiske B, Isaacs L, Roach A, Phipps T, Kordower JH, Lane EL, Huttunen HJ, Sullivan A, O'Keeffe G, Yartseva V, Federoff H. Neurotrophic factors for Parkinson's disease: Current status, progress, and remaining questions. Conclusions from a 2023 workshop. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1659-1676. [PMID: 39957193 DOI: 10.1177/1877718x241301041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
In 2023, a workshop was organized by the UK charity Cure Parkinson's with The Michael J Fox Foundation for Parkinson's Research and Parkinson's UK to review the field of growth factors (GFs) for Parkinson's disease (PD). This was a follow up to a previous meeting held in 2019.1 This 2023 workshop reviewed new relevant data that has emerged in the intervening 4 years around the development of new GFs and better models for studying them including the merit of combining treatments as well as therapies that can be modulated. We also discussed new insights into GF delivery and trial design that have emerged from the analyses of completed GDNF trials, including the patient voice, as well as the recently completed CDNF trial.2 We then concluded with our recommendations on how GF studies in PD should develop going forward.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences and Cambridge Stem Cell Institute, John van Geest Centre for Brain Repair, Forvie Site, Cambridge, UK
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine Morgan
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Alan Whone
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Massimo S Fiandaca
- Asklepios BioPharmaceutical, Inc. (AskBio), Research Triangle Park, NC, USA
| | - Matthias Luz
- Asklepios BioPharmaceutical, Inc. (AskBio), Research Triangle Park, NC, USA
| | - Krystof S Bankiewicz
- Asklepios BioPharmaceutical, Inc. (AskBio), Research Triangle Park, NC, USA
- The Ohio State University, College of Medicine, Pelotonia Research Center, Columbus, OH, USA
| | - Brian Fiske
- The Michael J Fox Foundation for Parkinson's Research, Grand Central Station, New York, NY, USA
| | | | | | | | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Aideen Sullivan
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Gerard O'Keeffe
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | | | - Howard Federoff
- Kenai Therapeutics, San Diego, CA, USA
- Neurology, School of Medicine, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Graewert MA, Volkova M, Jonasson K, Määttä JAE, Gräwert T, Mamidi S, Kulesskaya N, Evenäs J, Johnsson RE, Svergun D, Bhattacharjee A, Huttunen HJ. Structural basis of CDNF interaction with the UPR regulator GRP78. Nat Commun 2024; 15:8175. [PMID: 39289391 PMCID: PMC11408689 DOI: 10.1038/s41467-024-52478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway. Subsequent binding studies confirm the obtained structural model of the complex, eventually revealing the interaction site of CDNF and GRP78. Finally, mutating the key residues of CDNF mediating its interaction with GRP78 not only results in impaired binding of CDNF but also abolishes the neuroprotective activity of CDNF-derived peptides in mesencephalic neuron cultures. These results suggest that the molecular interaction with GRP78 mediates the neuroprotective actions of CDNF and provide a structural basis for development of next generation CDNF-based therapeutic compounds against neurodegenerative diseases.
Collapse
Affiliation(s)
- Melissa A Graewert
- European Molecular Biological Laboratory, DE-22607, Hamburg, Germany
- BIOSAXS GmbH, DE-22607, Hamburg, Germany
| | - Maria Volkova
- Red Glead Discovery AB, Medicon Village SE-223 81, Lund, Sweden
| | - Klara Jonasson
- Red Glead Discovery AB, Medicon Village SE-223 81, Lund, Sweden
| | - Juha A E Määttä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33520, Finland
| | | | - Samara Mamidi
- Red Glead Discovery AB, Medicon Village SE-223 81, Lund, Sweden
| | | | - Johan Evenäs
- Red Glead Discovery AB, Medicon Village SE-223 81, Lund, Sweden
| | | | | | | | | |
Collapse
|
5
|
Romagnoli A, Rexha J, Perta N, Di Cristofano S, Borgognoni N, Venturini G, Pignotti F, Raimondo D, Borsello T, Di Marino D. Peptidomimetics design and characterization: Bridging experimental and computer-based approaches. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:279-327. [PMID: 40122649 DOI: 10.1016/bs.pmbts.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Peptidomimetics, designed to mimic peptide biological activity with more drug-like properties, are increasingly pivotal in medicinal chemistry. They offer enhanced systemic delivery, cell penetration, target specificity, and protection against peptidases when compared to their native peptide counterparts. Already utilized in treating diverse diseases like neurodegenerative disorders, cancer and infectious diseases, their future in medicine seems bright, with many peptidomimetics in clinical trials or development stages. Peptidomimetics are well-suited for addressing disturbed protein-protein interactions (PPIs), which often underlie various pathologies. Structural biology and computational methods like molecular dynamics simulations facilitate rational design, whereas machine learning algorithms accelerate protein structure prediction, enabling efficient drug development. Experimental validation via various spectroscopic, biophysical, and biochemical assays confirms computational predictions and guides further optimization. Peptidomimetics, with their tailored constrained structures, represent a frontier in drug design focused on targeting PPIs. In this overview, we present a comprehensive landscape of peptidomimetics, encompassing perspectives on involvement in pathologies, chemical strategies, and methodologies for their characterization, spanning in silico, in vitro and in cell approaches. With increasing interest from pharmaceutical sectors, peptidomimetics hold promise for revolutionizing therapeutic approaches, marking a new era of precision drug discovery.
Collapse
Affiliation(s)
- Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy.
| | - Jesmina Rexha
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | - Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Noemi Borgognoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | - Gloria Venturini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Francesco Pignotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Spienza University of Rome, Rome, Italy; National Biodiversity Future Center (NBFC), Rome, Italy
| | - Tiziana Borsello
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| |
Collapse
|
6
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|