1
|
Zhong H, Lyu H, Wang Z, Tian J, Wu Z. Application of dissimilatory iron-reducing bacteria for the remediation of soil and water polluted with chlorinated organic compounds: Progress, mechanisms, and directions. CHEMOSPHERE 2024; 352:141505. [PMID: 38387660 DOI: 10.1016/j.chemosphere.2024.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Chlorinated organic compounds are widely used as solvents, but they are pollutants that can have adverse effects on the environment and human health. Dissimilatory iron-reducing bacteria (DIRB) such as Shewanella and Geobacter have been applied to treat a wide range of halogenated organic compounds due to their specific biological properties. Until now, there has been no systematic review on the mechanisms of direct or indirect degradation of halogenated organic compounds by DIRB. This work summarizes the discussion of DIRB's ability to enhance the dechlorination of reaction systems through different pathways, both biological and biochemical. For biological dechlorination, some DIRB have self-dechlorination capabilities that directly dechlorinate by hydrolysis. Adjustment of dechlorination genes through genetic engineering can improve the dechlorination capabilities of DIRB. DIRB can also adjust the capacity for the microbial community to dechlorinate and provide nutrients to enhance the expression of dechlorination genes in other bacteria. In biochemical dechlorination, DIRB bioconverts Fe(III) to Fe(II), which is capable of dichlorination. On this basis, the DIRB-driven Fenton reaction can efficiently degrade chlorinated organics by continuously maintaining anoxic conditions to generate Fe(II) and oxic conditions to generate H2O2. DIRB can drive microbial fuel cells due to their electroactivity and have a good dechlorination capacity at low levels of energy consumption. The contribution of DIRB to the removal of pesticides, antibiotics and POPs is summarized. Then the DIRB electron transfer mechanism is discussed, which is core to their ability to dechlorinate. Finally, the prospect of future work on the removal of chlorine-containing organic pollutants by DIRB is presented, and the main challenges and further research directions are suggested.
Collapse
Affiliation(s)
- Hua Zhong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Zang Y, Cao B, Zhao H, Xie B, Ge Y, Liu H, Yi Y. Mechanism and applications of bidirectional extracellular electron transfer of Shewanella. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1863-1877. [PMID: 37787043 DOI: 10.1039/d3em00224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Electrochemically active microorganisms (EAMs) play an important role in the fields of environment and energy. Shewanella is the most common EAM. Research into Shewanella contributes to a deeper comprehension of EAMs and expands practical applications. In this review, the outward and inward extracellular electron transfer (EET) mechanisms of Shewanella are summarized and the roles of riboflavin in outward and inward EET are compared. Then, four methods for the enhancement of EET performance are discussed, focusing on riboflavin, intracellular reducing force, biofilm formation and substrate spectrum, respectively. Finally, the applications of Shewanella in the environment are classified, and the restrictions are discussed. Potential solutions and promising prospects for Shewanella are also provided.
Collapse
Affiliation(s)
- Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, Guangdong Province, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Yang X, Huang X, Cheng J, Cheng Z, Yang Q, Hu L, Xu J, He Y. Diversity-triggered bottom-up trophic interactions impair key soil functions under lindane pollution stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120293. [PMID: 36183873 DOI: 10.1016/j.envpol.2022.120293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
A growing amount of evidence suggests that microbial diversity loss may have negative effects on soil ecosystem function. However, less attention has been paid to the determinants of the relationship between community diversity and soil functioning under pollution stress. Here we manipulated microbial diversity to observe how biotic and abiotic factors influenced soil multi-functions (e.g. lindane degradation, soil respiration and nutrient cycling). Results showed that protist community was more sensitive to dilution, pollution stress, and sodium acetate addition than bacterial and fungal community. Acetate addition accelerated the lindane removal. Any declines in microbial diversity reduced the specialized soil processes (NO3-N production, and N2O flux), but increased soil respiration rate. Dilution led to a significant increase in consumers-bacterial and fungi-bacterial interaction as evidenced by co-occurrence network, which possibly played roles in maintaining microbiome stability and resilience. Interestingly, pollution stress and resource availability weaken the relationship between microbial diversity and soil functions through the bottom-up trophic interaction and environmental preference of soil microbiome. Overall, this work provides experimental evidence that loss in microbial diversity, accompanied with changes in trophic interactions mediated biotic and abiotic factors, could have important consequences for specialized soil functioning in farmland ecosystems.
Collapse
Affiliation(s)
- Xueling Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Xiaowei Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Jie Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Zhongyi Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Qi Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| |
Collapse
|
5
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
6
|
Lindane removal in contaminated soil by defined microbial consortia and evaluation of its effectiveness by bioassays and cytotoxicity studies. Int Microbiol 2022; 25:365-378. [PMID: 35032229 DOI: 10.1007/s10123-022-00232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022]
Abstract
Lindane contamination in different environmental matrices has been a global concern for long. Bacterial consortia consisting of Paracoccus sp. NITDBR1, Rhodococcus rhodochrous NITDBS9, Ochrobactrum sp. NITDBR3, NITDBR4 and NITDBR5 were used for the bioremediation of soil artificially contaminated with lindane. The bacteria, Paracoccus sp. NITDBR1 and Rhodococcus rhodochrous NITDBS9, have been selected based on their lindane degrading capacity in liquid culture conditions (~80-90 %). The remaining three bacteria were chosen for their auxiliary properties for plant growth promotion, such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production and ammonia production under in vitro conditions. In this study, market wastes, mainly vegetable wastes, were added to the soil as a biostimulant to form a biomixture for assisting the degradation of lindane by bioaugmentation. Residual lindane was measured at regular intervals of 7 days to monitor the biodegradation process. It was observed that the consortium could degrade ~80% of 50 mg kg-1 lindane in soil which was further increased in the biomixture after six weeks of incubation. Bioassays performed on plant seeds and cytotoxicity studies performed on human skin fibroblast and HCT116 cell lines revealed that the groups contaminated with lindane and treated with the bacterial consortium showed lower toxicity than their respective controls without any bacteria. Hence, the use of both pesticide degrading and plant growth-promoting bacteria in a consortium can be a promising strategy for improved bioremediation against chemical pesticides, particularly in soil and agricultural fields, simultaneously enhancing crop productivity in those contaminated soil.
Collapse
|
7
|
Du Z, Zhang Y, Xu A, Pan S, Zhang Y. Biogenic metal nanoparticles with microbes and their applications in water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3213-3229. [PMID: 34734337 DOI: 10.1007/s11356-021-17042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Due to their unique characteristics, nanomaterials are widely used in many applications including water treatment. They are usually synthesized via physiochemical methods mostly involving toxic chemicals and extreme conditions. Recently, the biogenic metal nanoparticles (Bio-Me-NPs) with microbes have triggered extensive exploration. Besides their environmental-friendly raw materials and ambient biosynthesis conditions, Bio-Me-NPs also exhibit the unique surface properties and crystalline structures, which could eliminate various contaminants from water. Recent findings in the synthesis, morphology, composition, and structure of Bio-Me-NPs have been reviewed here, with an emphasis on the metal elements of Fe, Mn, Pd, Au, and Ag and their composites which are synthesized by bacteria, fungi, and algae. Furthermore, the mechanisms of eliminating organic and inorganic contaminants with Bio-Me-NPs are elucidated in detail, including adsorption, oxidation, reduction, and catalysis. The scale-up applicability of Bio-Me-NPs is also discussed.
Collapse
Affiliation(s)
- Zhiling Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
8
|
Insights into the Biosynthesis of Nanoparticles by the Genus Shewanella. Appl Environ Microbiol 2021; 87:e0139021. [PMID: 34495739 DOI: 10.1128/aem.01390-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.
Collapse
|
9
|
Long M, Long X, Zheng CW, Luo YH, Zhou C, Rittmann BE. Para-Chlorophenol (4-CP) Removal by a Palladium-Coated Biofilm: Coupling Catalytic Dechlorination and Microbial Mineralization via Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6309-6319. [PMID: 33848132 DOI: 10.1021/acs.est.0c08307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rapid dechlorination and full mineralization of para-chlorophenol (4-CP), a toxic contaminant, are unfulfilled goals in water treatment. Means to achieve both goals stem from the novel concept of coupling catalysis by palladium nanoparticles (PdNPs) with biodegradation in a biofilm. Here, we demonstrate that a synergistic version of the hydrogen (H2)-based membrane biofilm reactor (MBfR) enabled simultaneous removals of 4-CP and cocontaminating nitrate. In situ generation of PdNPs within the MBfR biofilm led to rapid 4-CP reductive dechlorination, with >90% selectivity to more bioavailable cyclohexanone. Then, the biofilm mineralized the cyclohexanone by utilizing it as a supplementary electron donor to accelerate nitrate reduction. Long-term operation of the Pd-MBfR enriched the microbial community in cyclohexanone degraders within Clostridium, Chryseobacterium, and Brachymonas. In addition, the PdNP played an important role in accelerating nitrite reduction; while NO3- reduction to NO2- was entirely accomplished by bacteria, NO2- reduction to N2 was catalyzed by PdNPs and bacterial reductases. This study documents a promising option for efficient and complete remediation of halogenated organics and nitrate by the combined action of PdNP and bacterial catalysis.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Dominguez CM, Romero A, Checa-Fernandez A, Santos A. Remediation of HCHs-contaminated sediments by chemical oxidation treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141754. [PMID: 32889469 DOI: 10.1016/j.scitotenv.2020.141754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The intensive use of organochlorine pesticides, such as lindane (γ-HCH), and the inadequate management of their wastes, is a huge environmental problem. The lindane production during the last century has generated huge volumes of solid wastes of other HCH isomers, causing hot points of soil and groundwater contamination. The soil treated in this work was obtained from a landfill located in the nearby of an old lindane factory, containing α-HCH and β-HCH as main contaminants. This study addresses for the first time the application of different chemical oxidation treatments, viz. Fenton process (H2O2 + Fe), persulfate (PS) activated by temperature (20 and 40 °C), by alkali (NaOH) and by the combination of alkali and temperature (NaOH, 40 °C) for the remediation of HCH-polluted soils (CHCHs = 155 mg kg-1). The intrinsic characteristics of the soil (high carbonate content) led to high consumption of H2O2 (XH2O2 ≈ 100% at 24 h) and complete iron precipitation, making unappropriated the application of the Fenton process. The efficiency of thermal PS was limited by the low solubility of HCH isomers in the aqueous phase, the high refractoriness of these compounds towards oxidation, and the presence of the contaminants in the form of particulate matter. After 25 days of treatment, a conversion of chlorinated organic compounds (COCs) of 50% was achieved (VL/Wsoil = 2, CPS = 40 g L-1, 40 °C), whereas the application of PS activated by alkali and temperature (40 °C) led to promising results. At pH above 12, HCHs were dehydrochlorinated to trichlorobenzenes, which were further oxidized by hydroxyl radicals. The hydrolysis rate of β-HCH was the limiting step of the process, and it was favored by increasing the reaction temperature. At 40 °C, a conversion of COCs above 95% was achieved (VL/Wsoil = 2, CPS = 40 g L-1, CNaOH = 13.5 g L-1, 14 days) with low oxidant consumption (XPS = 30%).
Collapse
Affiliation(s)
- Carmen M Dominguez
- Dpto. Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Arturo Romero
- Dpto. Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Alicia Checa-Fernandez
- Dpto. Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Aurora Santos
- Dpto. Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Verho O, Bäckvall JE. Nanocatalysis Meets Biology. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, Černík M, Dionysiou DD. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. WATER RESEARCH 2019; 162:302-319. [PMID: 31288141 DOI: 10.1016/j.watres.2019.06.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Lindane (γ-hexachlorocyclohexane) and its isomers (HCH) are some of the most common and most easily detected organochlorine pesticides in the environment. The widespread distribution of lindane is due to its use as an insecticide, accompanied by its persistence and bioaccumulation, whereas HCH were disposed of as waste in unmanaged landfills. Unfortunately, certain HCH (especially the most reactive ones: γ- and α-HCH) are harmful to the central nervous system and to reproductive and endocrine systems, therefore development of suitable remediation methods is needed to remove them from contaminated soil and water. This paper provides a short history of the use of lindane and a description of the properties of HCH, as well as their determination methods. The main focus of the paper, however, is a review of oxidative and reductive treatment methods. Although these methods of HCH remediation are popular, there are no review papers summarising their principles, history, advantages and disadvantages. Furthermore, recent advances in the chemical treatment of HCH are discussed and risks concerning these processes are given.
Collapse
Affiliation(s)
- Stanisław Wacławek
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Daniele Silvestri
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Pavel Hrabák
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Vinod V T Padil
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Rafael Torres-Mendieta
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Maria Wacławek
- Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-032, Opole, Poland
| | - Miroslav Černík
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
13
|
Kitjanukit S, Sasaki K, Okibe N. Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii. Extremophiles 2019; 23:549-556. [PMID: 31218490 DOI: 10.1007/s00792-019-01106-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/09/2019] [Indexed: 01/25/2023]
Abstract
The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14-63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl-, it was possible to conversely utilize the effect of Cl- to produce even finer and denser particles in the range of 8.7-15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)-chloride complex at elevated Cl- concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl- (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.
Collapse
Affiliation(s)
- Santisak Kitjanukit
- Department of Earth Resource Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resource Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naoko Okibe
- Department of Earth Resource Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
14
|
Chen Y, Chen Y, Wu J, Zhang J. The effect of biotic and abiotic environmental factors on Pd(II) adsorption and reduction by Bacillus wiedmannii MSM. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:546-553. [PMID: 30029100 DOI: 10.1016/j.ecoenv.2018.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we found a bacteria (Bacillus wiedmannii MSM) that could not only culture quickly under aerobic condition, but also can biological reduction of Pd (II) under both aerobic and anaerobic conditions. For reducing Pd (II) by Bacillus wiedmannii MSM, the best electron donor was sodium formate and the best growth time was 24 h (mid-log growth phase cells). TEM indicated that a lot of palladium nanoparticles (Pd-NPs) were mainly located in the periplasmic space of the live cells. However, the autoclaved cells could not synthesize Pd-NPs, which proved the role of enzyme in the reduction of Pd (II). A few of Pd-NPs were only formed on the surface of Cu2+-treated cells, which proved the main but not the only role of periplasmic hydrogenase in the reduction of Pd (II). XRD and XPS also proved that Pd-NPs could be synthesized by live cells over broad ranges of temperature (20-40 °C) and pH (pH 3.0-7.0). This may be especially useful for in situ reduction and remediation of Pd (II) for both anaerobic and aerobic wastewater.
Collapse
Affiliation(s)
- Yuan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China.
| | - Jingyi Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Jianyi Zhang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Niu Z, Jia Y, Chen Y, Hu Y, Chen J, Lv Y. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:356-363. [PMID: 29890437 DOI: 10.1016/j.ecoenv.2018.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h-1), μm (0.035 h-1) and Ki (714.29 mg/L) and the lowest apparent Ks (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol.
Collapse
Affiliation(s)
- Zhuyu Niu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yating Jia
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yuancai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junfeng Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuancai Lv
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; College of Environment & Resources, Fuzhou University, Fuzhou 350116, PR China
| |
Collapse
|
16
|
Murray AJ, Zhu J, Wood J, Macaskie LE. Biorefining of platinum group metals from model waste solutions into catalytically active bimetallic nanoparticles. Microb Biotechnol 2018; 11:359-368. [PMID: 29282886 PMCID: PMC5812250 DOI: 10.1111/1751-7915.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
Bacteria can fabricate platinum group metal (PGM) catalysts cheaply, a key consideration of industrial processes and waste decontaminations. Biorecovery of PGMs from wastes is promising but PGM leachates made from metallic scraps are acidic. A two-step biosynthesis 'pre-seeds' metallic deposits onto bacterial cells benignly; chemical reduction of subsequent metal from acidic solution via the seeds makes bioscaffolded nanoparticles (NPs). Cells of Escherichia coli were seeded using Pd(II) or Pt(IV) and exposed to a mixed Pd(II)/Pt(IV) model solution under H2 to make bimetallic catalyst. Its catalytic activity was assessed in the reduction of Cr(VI), with 2 wt% or 5 wt% preloading of Pd giving the best catalytic activity, while 1 wt% seeds gave a poorer catalyst. Use of Pt seeds gave less effective catalyst in the final bimetallic catalyst, attributed to fewer and larger initial seeds as shown by electron microscopy, which also showed a different pattern of Pd and Pt deposition. Bimetallic catalyst (using cells preloaded with 2 wt% Pd) was used in the hydrogenation of soybean oil which was enhanced by ~fourfold using the bimetallic catalyst made from a model waste solution as compared to 2 wt% Pd preloaded cells alone, with a similar selectivity to cis C18:1 product as found using a Pd-Al2 O3 commercial catalyst.
Collapse
Affiliation(s)
- Angela J. Murray
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Ju Zhu
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Joe Wood
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Lynne E. Macaskie
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
17
|
Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5249-5258. [PMID: 28004366 DOI: 10.1007/s11356-016-8276-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Bimetallic nanoparticles are generally believed to have improved catalytic activity and stability due to geometric and electronic changes. In this work, biogenic-Pd (bio-Pd), biogenic-Pt (bio-Pt), and biogenic-PdPt (bio-PdPt) nanoparticles were synthesized by Shewanella oneidensis MR-1 in the absence or presence of quinone. Compared with direct microbial reduction process, the addition of anthraquinone-2,6-disulfonate (AQDS) could promote the reduction efficiency of Pd(II) or/and Pt(IV) and result in decrease of particles size. All kinds of nanoparticles could catalyze 4-nitrophenol reduction by NaBH4 and their catalytic activities took the following order: bio-PdPt (AQDS) ∼ bio-PdPt > bio-Pd (AQDS) > bio-Pd > bio-Pt (AQDS) ∼ bio-Pt. Moreover, the bio-PdPt (AQDS) nanoparticles could be reused for 6 cycles. We believe that this simple and efficient biosynthesis approach for synthesizing bimetallic bio-PdPt nanocatalysts is important for preparing active and stable catalysts.
Collapse
Affiliation(s)
- Ya Tuo
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Bin Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huali Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
18
|
ISHIKI K, SHIIGI H, NAGAOKA T. Optical Elemental Analysis of Metals Using Shewanella oneidensis. ANAL SCI 2017; 33:551-553. [DOI: 10.2116/analsci.33.551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kengo ISHIKI
- Department of Applied Chemistry, Osaka Prefecture University
| | - Hiroshi SHIIGI
- Department of Applied Chemistry, Osaka Prefecture University
| | - Tsutomu NAGAOKA
- Department of Applied Chemistry, Osaka Prefecture University
| |
Collapse
|
19
|
Nuzzo A, Hosseinkhani B, Boon N, Zanaroli G, Fava F. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1068-1078. [PMID: 27894722 DOI: 10.1016/j.envpol.2016.11.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Biogenic palladium nanoparticles (bio-Pd NPs) represent a promising catalyst for organohalide remediation in water and sediments. However, the available information regarding their possible impact in case of release into the environment, particularly on the environmental microbiota, is limited. In this study the toxicity of bio-Pd NPs on the model marine bacterium V. fischeri was assessed. The impacts of different concentrations of bio-Pd NPs on the respiratory metabolisms (i.e. organohalide respiration, sulfate reduction and methanogenesis) and the structure of a PCB-dechlorinating microbial community enriched form a marine sediment were also investigated in microcosms mimicking the actual sampling site conditions. Bio-Pd NPs had no toxic effect on V. fischeri. In addition, they had no significant effects on PCB-dehalogenating activity, while showing a partial, dose-dependent inhibitory effect on sulfate reduction as well as on methanogenesis. No toxic effects by bio-Pd NPs could be also observed on the total bacterial community structure, as its biodiversity was increased compared to the not exposed community. In addition, resilience of the microbial community to bio-Pd NPs exposure was observed, being the final community organization (Gini coefficient) of samples exposed to bio-Pd NPs similar to that of the not exposed one. Considering all the factors evaluated, bio-Pd NPs could be deemed as non-toxic to the marine microbiota in the conditions tested. This is the first study in which the impact of bio-Pd NPs is extensively evaluated over a microbial community in relevant environmental conditions, providing important information for the assessment of their environmental safety.
Collapse
Affiliation(s)
- Andrea Nuzzo
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Baharak Hosseinkhani
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
20
|
Immobilization of biogenic Pd(0) in anaerobic granular sludge for the biotransformation of recalcitrant halogenated pollutants in UASB reactors. Appl Microbiol Biotechnol 2015; 100:1427-1436. [PMID: 26481621 DOI: 10.1007/s00253-015-7055-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Abstract
The capacity of anaerobic granular sludge to reduce Pd(II), using ethanol as electron donor, in an upflow anaerobic sludge blanket (UASB) reactor was demonstrated. Results confirmed complete reduction of Pd(II) and immobilization as Pd(0) in the granular sludge. The Pd-enriched sludge was further evaluated regarding biotransformation of two recalcitrant halogenated pollutants: 3-chloro-nitrobenzene (3-CNB) and iopromide (IOP) in batch and continuous operation in UASB reactors. The superior removal capacity of the Pd-enriched biomass when compared with the control (not exposed to Pd) was demonstrated in both cases. Results revealed 80 % of IOP removal efficiency after 100 h of incubation in batch experiments performed with Pd-enriched biomass whereas only 28 % of removal efficiency was achieved in incubations with biomass lacking Pd. The UASB reactor operated with the Pd-enriched biomass achieved 81 ± 9.5 % removal efficiency of IOP and only 61 ± 8.3 % occurred in the control reactor lacking Pd. Regarding 3-CNB, it was demonstrated that biogenic Pd(0) promoted both nitro-reduction and dehalogenation resulting in the complete conversion of 3-CNB to aniline while in the control experiment only nitro-reduction was documented. The complete biotransformation pathway of both contaminants was proposed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis evidencing a higher degree of nitro-reduction and dehalogenation of both contaminants in the experiments with Pd-enriched anaerobic sludge as compared with the control. A biotechnological process is proposed to recover Pd(II) from industrial streams and to immobilize it in anaerobic granular sludge. The Pd-enriched biomass is also proposed as a biocatalyst to achieve the biotransformation of recalcitrant compounds in UASB reactors.
Collapse
|
21
|
Schlüter M, Hentzel T, Suarez C, Koch M, Lorenz WG, Böhm L, Düring RA, Koinig KA, Bunge M. Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. CHEMOSPHERE 2014; 117:462-470. [PMID: 25218779 DOI: 10.1016/j.chemosphere.2014.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
In a search for new aqueous-phase systems for catalyzing reactions of environmental and industrial importance, we prepared novel biogenerated palladium (Pd) nanocatalysts using a "green" approach based on microorganisms isolated from high-alpine sites naturally impacted by heavy metals. Bacteria and fungi were enriched and isolated from serpentinite-influenced ponds (Totalp region, Parsenn, near Davos, Graubünden, Switzerland). Effects on growth dynamics were monitored using an automated assay in 96-well microtiter plates, which allowed for simultaneous cultivation and on-line analysis of Pd(II)- and Ni(II)-mediated growth inhibition. Microorganisms from Totalp ponds tolerated up to 3mM Pd(II) and bacterial isolates were selected for cultivation and reductive synthesis of Pd(0) nanocatalysts at microbial interfaces. During reduction of Pd(II) with formate as the electron donor, Pd(0) nanoparticles were formed and deposited in the cell envelope. The Pd(0) catalysts produced in the presence of Pd(II)-tolerant Alpine Pseudomonas species were catalytically active in the reductive dehalogenation of model polychlorinated dioxin congeners. This is the first report which shows that Pd(0) synthesized in the presence of microorganisms catalyzes the reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs). Because the "bioPd(0)" catalyzed the dechlorination reactions preferably via non-lateral chlorinated intermediates, such a pathway could potentially detoxify PCDDs via a "safe route". It remains to be determined whether the microbial formation of catalytically active metal catalysts (e.g., Zn, Ni, Fe) occurs in situ and whether processes involving such catalysts can alter the fate and transport of persistent organic pollutants (POPs) in Alpine habitats.
Collapse
Affiliation(s)
- Michael Schlüter
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany
| | - Thomas Hentzel
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany
| | - Christian Suarez
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany
| | - Mandy Koch
- Institute of Chemistry, Research Group Food and Environmental Chemistry, Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Wilhelm G Lorenz
- Institute of Chemistry, Research Group Food and Environmental Chemistry, Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Leonard Böhm
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany
| | | | - Michael Bunge
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany.
| |
Collapse
|
22
|
Suja E, Nancharaiah YV, Venugopalan VP. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation. WATER RESEARCH 2014; 65:395-401. [PMID: 25223898 DOI: 10.1016/j.watres.2014.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations.
Collapse
Affiliation(s)
- E Suja
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India
| | - V P Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India.
| |
Collapse
|
23
|
Salam JA, Das N. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment. Appl Microbiol Biotechnol 2014; 99:2351-60. [PMID: 25304880 DOI: 10.1007/s00253-014-6112-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.
Collapse
Affiliation(s)
- Jaseetha Abdul Salam
- Bioremediation Lab, Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | | |
Collapse
|
24
|
Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. Applications of biosynthesized metallic nanoparticles - a review. Acta Biomater 2014; 10:4023-42. [PMID: 24925045 DOI: 10.1016/j.actbio.2014.05.022] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/13/2014] [Accepted: 05/21/2014] [Indexed: 02/08/2023]
Abstract
We present a comprehensive review of the applications of biosynthesized metallic nanoparticles (NPs). The biosynthesis of metallic NPs is the subject of a number of recent reviews, which focus on the various "bottom-up" biofabrication methods and characterization of the final products. Numerous applications exploit the advantages of biosynthesis over chemical or physical NP syntheses, including lower capital and operating expenses, reduced environmental impacts, and superior biocompatibility and stability of the NP products. The key applications reviewed here include biomedical applications, especially antimicrobial applications, but also imaging applications, catalytic applications such as reduction of environmental contaminants, and electrochemical applications including sensing. The discussion of each application is augmented with a critical review of the potential for continued development.
Collapse
|
25
|
Tuo Y, Liu G, Zhou J, Wang A, Wang J, Jin R, Lv H. Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. BIORESOURCE TECHNOLOGY 2013; 133:606-611. [PMID: 23453979 DOI: 10.1016/j.biortech.2013.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/09/2013] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
Geobacter sulfurreducens was studied for the reduction of Pd(II) and production of Pd(0) nanoparticles capable of reducing Cr(VI). Transmission electronic microscopy, energy dispersive X-ray and X-ray diffraction analyses revealed that the nanoscale Pd(0) particles formed were associated with the cell surface and located inside the periplasm. The increase of cell dry weight (CDW):Pd ratio and addition of anthraquinone-2,6-disulfonate (AQDS) not only stimulated Pd(II) reduction, but also resulted in increase of nanoparticle number, decrease of particle diameter and improvement of Cr(VI) reduction efficiency. The relationship between reduction rate and initial Cr(VI) concentration (150-750 μM) followed Michaelis-Menten kinetics (Vmax=3.6 μmol h(-1) mg bio-Pd(-1) and Km=891.3 μM). These findings indicated the potential of using G. sulfurreducens cells for reclamation of palladium, formation of Pd(0) nanoparticles and efficient treatment of Cr(VI) pollution.
Collapse
Affiliation(s)
- Ya Tuo
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
26
|
De Corte S, Sabbe T, Hennebel T, Vanhaecke L, De Gusseme B, Verstraete W, Boon N. Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions. WATER RESEARCH 2012; 46:2718-2726. [PMID: 22406286 DOI: 10.1016/j.watres.2012.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way ('bio-Pd'). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst. This study shows that the activity of bio-Pd can be improved by doping with Au(0) ('bio-Pd/Au'). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model pharmaceutical compound diclofenac from an aqueous medium in batch experiments at neutral pH and with H(2) as the hydrogen donor (first order decay constant of 0.078 ± 0.009 h(-1)). Dehalogenation was for both catalysts the only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity (first order decay value of 0.52 ± 0.02 h(-1)). The removal of 6.40 μg L(-1) diclofenac from a wastewater treatment plant effluent using bio-Pd was not possible even after prolonged reaction time. However, by using the most active bio-Pd/Au catalyst, 43.8 ± 0.5% of the initially present diclofenac could be removed after 24 h. This study shows that doping of bio-Pd nanoparticles with Au(0) can be a promising approach for the reductive treatment of wastewaters containing halogenated contaminants.
Collapse
Affiliation(s)
- Simon De Corte
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N. Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 2012; 5:5-17. [PMID: 21554561 PMCID: PMC3815268 DOI: 10.1111/j.1751-7915.2011.00265.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022] Open
Abstract
While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment-friendly way. Biological synthesis of Pd nanoparticles ('bio-Pd') is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio-Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio-Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio-Pd in environmental technology are presented.
Collapse
Affiliation(s)
| | | | | | | | - Nico Boon
- Department of Biochemical and Microbial Technology, Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B‐9000 Gent, Belgium
| |
Collapse
|
28
|
De Corte S, Hennebel T, Fitts JP, Sabbe T, Bliznuk V, Verschuere S, van der Lelie D, Verstraete W, Boon N. Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8506-8513. [PMID: 21877727 DOI: 10.1021/es2019324] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichlorethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L(-1) and reduced simultaneously by Shewanella oneidensis in the presence of H(2), the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.
Collapse
Affiliation(s)
- Simon De Corte
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Søbjerg LS, Lindhardt AT, Skrydstrup T, Finster K, Meyer RL. Size control and catalytic activity of bio-supported palladium nanoparticles. Colloids Surf B Biointerfaces 2011; 85:373-8. [DOI: 10.1016/j.colsurfb.2011.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/19/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
30
|
Hennebel T, Van Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, Fitts JP, van der Lelie D, Boon N, Verstraete W. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 2011; 91:1435-45. [PMID: 21590286 DOI: 10.1007/s00253-011-3329-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/29/2022]
Abstract
A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 ± 0.02 h⁻¹ and 5.58 ± 0.6 h⁻¹ in batches with initial concentrations of 10 and 50 mg L⁻¹ Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L⁻¹ diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg⁻¹ Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.
Collapse
Affiliation(s)
- Tom Hennebel
- Laboratory of Microbial Ecology and Technology (LabMET), Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Local magnetism in palladium bionanomaterials probed by muon spectroscopy. Biotechnol Lett 2011; 33:969-76. [DOI: 10.1007/s10529-011-0532-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/23/2010] [Indexed: 11/26/2022]
|
32
|
Ogi T, Honda R, Tamaoki K, Saito N, Konishi Y. Biopreparation of Highly Dispersed Pd Nanoparticles on Bacterial Cell and Their Catalytic Activity for Polymer Electrolyte Fuel Cell. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-1272-pp06-03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractRapid development in the area of low-temperature fuel cells has led to increased attention on catalyst synthesis with cost effective and environmentally-benign technology (green chemistry). In this study, a highly dispersed palladium nanoparticle catalyst was successfully prepared on a bacterial cell support by a single-step, room-temperature microbial method without dispersing agents. The metal ion reducing bacterium Shewanella oneidensis were able to reduce palladium ions into insoluble palladium at room temperature when formate was provided as the electron donor. The prepared biomass-supported palladium nanoparticles were characterized for their catalytic activity as anodes in polymer electric membrane fuel cell for power production. The maximum power generation of the biomass-supported palladium catalyst was up to 90% of that of a commercial palladium catalyst.
Collapse
|
33
|
Ogi T, Honda R, Tamaoki K, Saitoh N, Konishi Y. Direct room-temperature synthesis of a highly dispersed Pd nanoparticle catalyst and its electrical properties in a fuel cell. POWDER TECHNOL 2011. [DOI: 10.1016/j.powtec.2010.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences. PLoS One 2010; 5:e13968. [PMID: 21103051 PMCID: PMC2980473 DOI: 10.1371/journal.pone.0013968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023] Open
Abstract
Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.
Collapse
|
35
|
Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. Biotechnol Lett 2010; 33:89-95. [DOI: 10.1007/s10529-010-0393-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
36
|
Bunge M, Søbjerg LS, Rotaru AE, Gauthier D, Lindhardt AT, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer RL. Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol Bioeng 2010; 107:206-15. [DOI: 10.1002/bit.22801] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Antonaraki S, Triantis T, Papaconstantinou E, Hiskia A. Photocatalytic degradation of lindane by polyoxometalates: Intermediates and mechanistic aspects. Catal Today 2010. [DOI: 10.1016/j.cattod.2010.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Nagpal V, Bokare AD, Chikate RC, Rode CV, Paknikar KM. Reductive dechlorination of gamma-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2010; 175:680-687. [PMID: 19944524 DOI: 10.1016/j.jhazmat.2009.10.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/15/2009] [Accepted: 10/15/2009] [Indexed: 05/28/2023]
Abstract
Nanoscale Fe-Pd bimetallic particles were synthesized and used for degradation of lindane (gamma-hexachlorocyclohexane) in aqueous solution. Batch studies showed that 5mg/L of lindane was completely dechlorinated within 5 min at a catalyst loading of 0.5 g/L and the degradation process followed first-order kinetics. GC-MS analysis in corroboration with GC-ECD results showed the presence of cyclohexane as the final degradation product. The proposed mechanism for the reductive dechlorination of lindane involves Fe corrosion-induced hydrogen atom transfer from the Pd surface. The enhanced degradation efficiency of Fe-Pd nanoparticles is attributed to: (1) high specific surface area of the nanoscale metal particles (60 m(2)/g), manyfold greater that of commercial grade micro- or milli-scale iron particles (approximately 1.6m(2)/g); and, (2) increased catalytic reactivity due to the presence of Pd on the surface. Recycling and column studies showed that these nanoparticles exhibit efficient and sustained catalytic activity.
Collapse
Affiliation(s)
- Varima Nagpal
- Center for Nanobioscience, Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | | | | | | | | |
Collapse
|
39
|
Deplanche K, Snape TJ, Hazrati S, Harrad S, Macaskie LE. Versatility of a new bioinorganic catalyst: palladized cells of Desulfovibrio desulfuricans and application to dehalogenation of flame retardant materials. ENVIRONMENTAL TECHNOLOGY 2009; 30:681-692. [PMID: 19705605 DOI: 10.1080/09593330902860712] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The versatility and reaction specificity of a novel bioinorganic catalyst is demonstrated in various reactions. Palladized cells (bioPd) of the sulphate-reducing bacterium Desulfovibrio desulfuricans showed an increased product selectivity and a catalytic activity comparable to a commercial Pd catalyst in several industrially relevant hydrogenations and hydrogenolyses (reductive dehalogenations). The ability of palladized cells to promote the reductive debromination of a polybrominated diphenyl ether (PBDE #47) is demonstrated, although chemically reduced Pd(II) and commercial Pd(0) were more effective debromination agents. Polybrominated diphenyl ethers are being supplanted as flame retardants by other compounds, e.g. tris(chloroisopropyl)phosphate (TCPP), the concentration of which was seen to increase approximately 10-fold in groundwater samples between 2000 and 2004. BioPd dechlorinated TCPP in groundwater samples with >90% recovery of free chloride ion, and was five times more effective than using commercial Pd(0) catalyst. Examination of the spent groundwater using 31P NMR showed a phosphorus species novel to the bioPd-treated solution, which was not evident in a commercial reference sample of TCPP.
Collapse
Affiliation(s)
- K Deplanche
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
40
|
Wang JS, Chiu K. Destruction of pentachlorobiphenyl in soil by supercritical CO(2) extraction coupled with polymer-stabilized palladium nanoparticles. CHEMOSPHERE 2009; 75:629-633. [PMID: 19211124 DOI: 10.1016/j.chemosphere.2009.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 05/27/2023]
Abstract
PCBs exhibit a wide range of toxic effects, and they are very stable compounds and do not degrade readily. Although they had been banned in the 1970s; however; it is still urgent to investigate and develop a financially viable, environmentally benign and safe technology to treat the soils contaminated by PCBs. This study investigated the feasibility of coupling of supercritical fluid carbon dioxide (ScCO(2)) extraction with polymer-stabilized palladium nanoparticles for the destruction of pentachlorinated biphenyl (2,2',4,5,5'-PCB) from contaminated sand or soil samples. The extracted 2,2',4,5,5'-PCB can be converted into non-chlorinated products by hydrodechlorination catalyzed by palladium (Pd) nanoparticles, which were stabilized in high-density polyethylene (HDPE) beads. Nearly all 2,2',4,5,5'-PCB was removed quantitatively from solid matrices at 200atm and different temperatures. The final product was proved to be biphenyl and cyclohexylbenzene. The polymer-stabilized palladium nanoparticle catalyst, which does not contact the contaminated matrix directly, can be reused without losing the high catalytic activity inherent by nanometer-sized particles. Deactivation factors such as leaching of metal particles from support, agglomeration and sintering are minimized in this catalyst system due to the unique plastic matrix environment. A combination of supercritical fluid extraction and an on-line catalytic reaction system utilizing the plastic catalysts may have great advantages over other processes for destroying toxic chlorinated compounds in environmental samples.
Collapse
Affiliation(s)
| | - KongHwa Chiu
- Department of Applied Science, National Dong Hwa University, Hualien 970, Taiwan, ROC.
| |
Collapse
|
41
|
Hennebel T, Simoen H, De Windt W, Verloo M, Boon N, Verstraete W. Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Biotechnol Bioeng 2009; 102:995-1002. [DOI: 10.1002/bit.22138] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Hennebel T, De Gusseme B, Boon N, Verstraete W. Biogenic metals in advanced water treatment. Trends Biotechnol 2009; 27:90-8. [DOI: 10.1016/j.tibtech.2008.11.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
43
|
de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol 2008; 19:579-89. [PMID: 19000761 DOI: 10.1016/j.copbio.2008.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor de Lorenzo
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
44
|
Patel UD, Suresh S. Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interface Sci 2008; 319:462-9. [DOI: 10.1016/j.jcis.2007.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/21/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|