1
|
Munjanja BK, Nomngongo PN, Mketo N. Organochlorine pesticides in vegetable oils: An overview of occurrence, toxicity, and chromatographic determination in the past twenty-two years (2000-2022). Crit Rev Food Sci Nutr 2023; 64:10204-10220. [PMID: 37335094 DOI: 10.1080/10408398.2023.2222010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Organochlorine pesticides (OCPs) are used globally to control pests in the food industry. However, some have been banned due to their toxicity. Although they have been banned, OCPs are still discharged into the environment and persist for long periods of time. Therefore, this review focused on the occurrence, toxicity, and chromatographic determination of OCPs in vegetable oils over the last 22 years (2000-2022) (111 references). Literature search shows that OCPs kill pests by destroying endocrine, teratogenic, neuroendocrine, immune, and reproductive systems. However, only five studies investigated the fate of OCPs in vegetable oils and the outcome revealed that some of the steps involved during oil processing introduce more OCPs. Moreover, direct chromatographic determination of OCPs was mostly performed using online LC-GC methods fitted with oven transfer adsorption desorption interface. While indirect chromatographic determination was favored by QuEChERS extraction technique, gas chromatography frequently coupled to electron capture detection (ECD), gas chromatography in selective ion monitoring mode (SIM), and gas chromatography tandem mass spectrometry (GC-MS/MS) were the most common techniques used for detection. However, the greatest challenge still faced by analytical chemists is to obtain clean extracts with acceptable extraction recoveries (70-120%). Hence, more research is still required to develop greener and selective extraction methods toward OCPs, thus improving extraction recoveries. Moreover, advanced techniques like gas chromatography high resolution mass spectrometry (GC-HRMS) must also be explored. OCPs prevalence in vegetable oils varied greatly in various countries, and concentrations of up to 1500 µg/kg were reported. Additionally, the percentage of positive samples ranged from 1.1 to 97.5% for endosulfan sulfate.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, Johannesburg, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, Johannesburg, South Africa
| |
Collapse
|
2
|
Subramani T, Ganapathyswamy H, Sampathrajan V, Sundararajan A, Marimuthu M. Effect of processing on selected pesticide residues in cottonseed (
Gossypium
spp.). J Food Saf 2022. [DOI: 10.1111/jfs.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thirukkumar Subramani
- Department of Food Science Amrita School of Agricultural Sciences, Amrita Vishwa vidyapeetham Coimbatore Tamil Nadu India
| | - Hemalatha Ganapathyswamy
- Department of Food Science and Nutrition, Community Science College and Research Institute Tamil Nadu Agricultural University Madurai Tamil Nadu India
| | - Vellaikumar Sampathrajan
- Center of Innovation, Department of Biotechnology, Agricultural College and Research Institute Tamil Nadu Agricultural University Madurai Tamil Nadu India
| | - Amutha Sundararajan
- Department of Food Science and Nutrition, Community Science College and Research Institute Tamil Nadu Agricultural University Madurai Tamil Nadu India
| | - Murugan Marimuthu
- Department of Agricultural Entomology Tamil Nadu Agricultural University Coimbatore Tamil Nadu India
| |
Collapse
|
3
|
Abstract
This study evaluated the efficiency of two biofilter systems, with and without biochar chambers installed, at degrading and removing HCH and its isomers in natural drainage water. The biochar biofilter proved to be 96% efficient at cleaning HCH and its transformation products from drainage water, a significant improvement over classic biofilter that remove, on average, 68% of HCH. Although iron- and sulfur-oxidizing bacteria, such as Gallionella and Sulfuricurvum, were dominant in the biochar bed outflows, they were absent in sediments, which were rich in Simplicispira, Rhodoluna, Rhodoferax, and Flavobacterium. The presence of functional genes involved in the biodegradation of HCH isomers and their byproducts was confirmed in both systems. The high effectiveness of the biochar biofilter displayed in this study should further encourage the use of biochar in water treatment solutions, e.g., for temporary water purification installations during the construction of other long-term wastewater treatment technologies, or even as final solutions at contaminated sites.
Collapse
|
4
|
Belarbi S, Vivier M, Zaghouani W, De Sloovere A, Agasse V, Cardinael P. Comparison of Different d-SPE Sorbent Performances Based on Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Methodology for Multiresidue Pesticide Analyses in Rapeseeds. Molecules 2021; 26:6727. [PMID: 34771135 PMCID: PMC8588138 DOI: 10.3390/molecules26216727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Pesticide extraction in rapeseed samples remains a great analytical challenge due to the complexity of the matrix, which contains proteins, fatty acids, high amounts of triglycerides and cellulosic fibers. An HPLC-MS/MS method was developed for the quantification of 179 pesticides in rapeseeds. The performances of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method were evaluated using different dispersive solid-phase extraction (d-SPE) sorbents containing common octadecylsilane silica/primary-secondary amine adsorbent (PSA/C18) and new commercialized d-SPE materials dedicated to fatty matrices (Z-Sep, Z-Sep+, and EMR-Lipid). The analytical performances of these different sorbents were compared according to the SANTE/12682/2019 document. The best results were obtained using EMR-Lipid in terms of pesticide average recoveries (103 and 70 of the 179 targeted pesticides exhibited recoveries within 70-120% and 30-70%, respectively, with low RSD values). Moreover, the limits of quantification (LOQ) range from 1.72 µg/kg to 6.39 µg/kg for 173 of the pesticides. Only the recovery for tralkoxydim at 10 μg/kg level was not satisfactory (29%). The matrix effect was evaluated and proved to be limited between -50% and 50% for 169 pesticides with this EMR-Lipid and freezing. GC-Orbitrap analyses confirmed the best efficiency of the EMR-Lipid sorbent for the purification of rapeseeds.
Collapse
Affiliation(s)
- Saida Belarbi
- Laboratoire SMS-EA3233, Normandie University, FR3038 INC3M, Unirouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France;
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Martin Vivier
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Wafa Zaghouani
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Aude De Sloovere
- SGS France Laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, BP 90014, F-76801 Saint Etienne du Rouvray, France; (M.V.); (W.Z.); (A.D.S.)
| | - Valerie Agasse
- Laboratoire SMS-EA3233, Normandie University, FR3038 INC3M, Unirouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France;
| | - Pascal Cardinael
- Laboratoire SMS-EA3233, Normandie University, FR3038 INC3M, Unirouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France;
| |
Collapse
|
5
|
Cui Y, Ke R, Gao W, Tian F, Wang Y, Jiang G. Analysis of Organochlorine Pesticide Residues in Various Vegetable Oils Collected in Chinese Markets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14594-14602. [PMID: 33186497 DOI: 10.1021/acs.jafc.0c05227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organochlorine pesticides (OCPs), chemicals frequently used in agriculture, are a group of highly toxic and persistent organic pollutants. This study assesses the distribution and congener profiles of residual OCPs in 11 types of vegetable oils collected from Chinese markets. All samples were extracted using the modified QuEChERS method prior to analysis by gas chromatography-triple quadrupole mass spectrometry. The sesame oil samples had the highest concentration of OCPs, within the range of 15.30-59.38 ng/g, whereas the peanut oil samples had the lowest OCP concentrations, within the range of 10.83-35.65 ng/g. The possible effect of the processing technology on the pesticide residues in these vegetable oils was also evaluated. It was found that the pressing method leaves more OCPs in vegetable oils than the aqueous extraction and cold-pressing, but the result for leaching was not obvious. In light of the obtained results, it was estimated that the average daily intake of different pesticides is between 0.01 and 2.20 ng/kg bw/day for urban and rural households. Hence, it can be affirmed that, given the amount of the concentration of OCPs detected in the vegetable oils collected from Chinese markets, there are no obvious health risks for urban and rural households by intake.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhui Ke
- Chinese National Research Institute of Food & Fermentation Industries Co., Ltd, Beijing 100016, China
| | - Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feifei Tian
- Shimadzu Global COE for Application & Technical Development, Beijing 100020, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Khan MI, Cheema SA, Anum S, Niazi NK, Azam M, Bashir S, Ashraf I, Qadri R. Phytoremediation of Agricultural Pollutants. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-00099-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. CHEMOSPHERE 2017; 166:41-62. [PMID: 27684437 DOI: 10.1016/j.chemosphere.2016.09.070] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/03/2023]
Abstract
Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants. This ability is the reason why actinobacteria have received special attention as candidates for bioremediation, which has gained importance because of the widespread release of contaminants into the environment. Among organic contaminants, pesticides are widely used for pest control, although the negative impact of these chemicals in the environmental balance is increasingly becoming apparent. Similarly, the extensive application of heavy metals in industrial processes lead to highly contaminated areas worldwide. Several studies focused in the use of actinobacteria for cleaning up the environment were performed in the last 15 years. Strategies such as bioaugmentation, biostimulation, cell immobilization, production of biosurfactants, design of defined mixed cultures and the use of plant-microbe systems were developed to enhance the capabilities of actinobacteria in bioremediation. In this review, we compiled and discussed works focused in the study of different bioremediation strategies using actinobacteria and how they contributed to the improvement of the already existing strategies. In addition, we discuss the importance of omic studies to elucidate mechanisms and regulations that bacteria use to cope with pollutant toxicity, since they are still little known in actinobacteria. A brief account of sources and harmful effects of pesticides and heavy metals is also given.
Collapse
Affiliation(s)
- Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - Juliana Maria Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - José Sebastian Davila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Veronica Leticia Colin
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - María Soledad Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Sergio Antonio Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - María Julia Amoroso
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| |
Collapse
|
8
|
Parrilla Vázquez P, Hakme E, Uclés S, Cutillas V, Martínez Galera M, Mughari A, Fernández-Alba A. Large multiresidue analysis of pesticides in edible vegetable oils by using efficient solid-phase extraction sorbents based on quick, easy, cheap, effective, rugged and safe methodology followed by gas chromatography–tandem mass spectrometry. J Chromatogr A 2016; 1463:20-31. [DOI: 10.1016/j.chroma.2016.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
9
|
Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:123-37. [PMID: 25540847 DOI: 10.1016/j.scitotenv.2014.12.041] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/19/2023]
Abstract
Though the use of pesticides has offered significant economic benefits by enhancing the production and yield of food and fibers and the prevention of vector-borne diseases, evidence suggests that their use has adversely affected the health of human populations and the environment. Pesticides have been widely distributed and their traces can be detected in all areas of the environment (air, water and soil). Despite the ban of DDT and HCH in India, they are still in use, both in domestic and agricultural settings. In this comprehensive review, we discuss the production and consumption of persistent organic pesticides, their maximum residual limit (MRL) and the presence of persistent organic pesticides in multicomponent environmental samples (air, water and soil) from India. In order to highlight the global distribution of persistent organic pesticides and their impact on neighboring countries and regions, the role of persistent organic pesticides in Indian region is reviewed. Based on a review of research papers and modeling simulations, it can be concluded that India is one of the major contributors of global persistent organic pesticide distribution. This review also considers the health impacts of persistent organic pesticides, the regulatory measures for persistent organic pesticides, and the status of India's commitment towards the elimination of persistent organic pesticides.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
10
|
A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chem 2014; 151:47-52. [DOI: 10.1016/j.foodchem.2013.11.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/29/2013] [Accepted: 11/10/2013] [Indexed: 11/24/2022]
|
11
|
Alvarez A, Benimeli CS, Saez JM, Fuentes MS, Cuozzo SA, Polti MA, Amoroso MJ. Bacterial bio-resources for remediation of hexachlorocyclohexane. Int J Mol Sci 2012; 13:15086-106. [PMID: 23203113 PMCID: PMC3509629 DOI: 10.3390/ijms131115086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/29/2012] [Accepted: 10/17/2012] [Indexed: 11/25/2022] Open
Abstract
In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.
Collapse
Affiliation(s)
- Analía Alvarez
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- Natural Sciences College and Miguel Lillo Institute, National University of Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - Claudia S. Benimeli
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- North University of Saint Thomas Aquines, 9 de Julio 165, 4000 Tucumán, Argentina
| | - Juliana M. Saez
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
| | - María S. Fuentes
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
| | - Sergio A. Cuozzo
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- Natural Sciences College and Miguel Lillo Institute, National University of Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - Marta A. Polti
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- Natural Sciences College and Miguel Lillo Institute, National University of Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - María J. Amoroso
- Pilot Plant of Industrial and Microbiological Processes (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; E-Mails: (A.A.); (C.S.B.); (J.M.S.); (M.S.F.); (S.A.C.); (M.A.P.)
- North University of Saint Thomas Aquines, 9 de Julio 165, 4000 Tucumán, Argentina
- Biochemistry, Chemistry and Pharmacy College, National University of Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
| |
Collapse
|
12
|
Kumar A, Kumar A, Murty OP, Gupta VP, Das S. A rare case of homicidal insecticide (organochloro compound) poisoning by intraperitoneal injection. MEDICINE, SCIENCE, AND THE LAW 2012; 52:231-233. [PMID: 22623712 DOI: 10.1258/msl.2012.010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a case of a 52-year-old businessman who was allegedly injected with organochloro compound (OC) in his abdomen by his business rivals by means of a surgical needle and a syringe. Homicide by OC injection via an intraperitoneal route has not been reported in the literature. Postmortem findings along with the toxicology report have been discussed particularly in view of the mode of poison administration with a review of literature.
Collapse
|
13
|
Chung SW, Chen BL. Determination of organochlorine pesticide residues in fatty foods: A critical review on the analytical methods and their testing capabilities. J Chromatogr A 2011; 1218:5555-67. [DOI: 10.1016/j.chroma.2011.06.066] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 10/18/2022]
|
14
|
Qin YY, Leung CKM, Leung AOW, Zheng JS, Wong MH. Persistent organic pollutants in food items collected in Hong Kong. CHEMOSPHERE 2011; 82:1329-1336. [PMID: 21193217 DOI: 10.1016/j.chemosphere.2010.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 05/30/2023]
Abstract
This study aims to investigate levels of POPs in meat, edible oils, nuts, milk and wine collected from Hong Kong. Naphthalene, pp-DDE, beta-, gamma-HCH and PBDE 47 were detected in most of the food items. Goose liver accumulated the highest PAHs (47.9ngg(-1) wet wt), DDTs (25.6), HCHs (13.0), PCBs (4.17), PBDEs (468pgg(-1) wet wt) among all the selected food. Meat and nut groups had significant (p<0.01 or 0.05) correlations between lipid contents and concentrations of PAHs (meat: r=0.878), HCHs (meat: r=0.753), DDTs (meat: r=0.937; nuts: r=0.968) and PCBs (meat: r=0.832; nut: r=0.946). The concentrations of DDTs, HCHs and PCBs in vegetable oil were lower, but HCHs in fish oil were higher, when compared with other countries. The concentrations of PAHs, DDTs, PCBs and PBDEs in food tested in the present study were all below various safety guidelines.
Collapse
Affiliation(s)
- Yan Yan Qin
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
15
|
Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 2010; 74:58-80. [PMID: 20197499 DOI: 10.1128/mmbr.00029-09] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lindane, the gamma-isomer of hexachlorocyclohexane (HCH), is a potent insecticide. Purified lindane or unpurified mixtures of this and alpha-, beta-, and delta-isomers of HCH were widely used as commercial insecticides in the last half of the 20th century. Large dumps of unused HCH isomers now constitute a major hazard because of their long residence times in soil and high nontarget toxicities. The major pathway for the aerobic degradation of HCH isomers in soil is the Lin pathway, and variants of this pathway will degrade all four of the HCH isomers although only slowly. Sequence differences in the primary LinA and LinB enzymes in the pathway play a key role in determining their ability to degrade the different isomers. LinA is a dehydrochlorinase, but little is known of its biochemistry. LinB is a hydrolytic dechlorinase that has been heterologously expressed and crystallized, and there is some understanding of the sequence-structure-function relationships underlying its substrate specificity and kinetics, although there are also some significant anomalies. The kinetics of some LinB variants are reported to be slow even for their preferred isomers. It is important to develop a better understanding of the biochemistries of the LinA and LinB variants and to use that knowledge to build better variants, because field trials of some bioremediation strategies based on the Lin pathway have yielded promising results but would not yet achieve economic levels of remediation.
Collapse
|