1
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Li X, Xu Q, Cheng Y, Chen C, Shen C, Zhang C, Zheng D, Zhang D. Effect of microplastics on microbial dechlorination of a polychlorinated biphenyl mixture (Aroclor 1260). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154904. [PMID: 35364163 DOI: 10.1016/j.scitotenv.2022.154904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) generally coexist in the environment, posing risks to public health and the environment. This study investigated the effect of different MPs on the microbial anaerobic reductive dechlorination of Aroclor 1260, a commercial PCB mixture. MP exposure inhibited microbial reductive dechlorination of PCBs, with inhibition rates of 39.43%, 23.97%, and 17.53% by polyethylene (PE), polypropylene (PP), and polystyrene (PS), respectively. The dechlorination rate decreased from 1.63 μM Cl- d-1 to 0.99-1.34 μM Cl- d-1 after MP amendment. Chlorine removal in the meta-position of PCBs was primarily inhibited by MPs, with no changes in the final PCB dechlorination metabolites. The microbial community compositions in MP biofilms were not significantly different (P > 0.05) from those in suspension culture, although possessing greater Dehalococcoides abundance (0.52-0.81% in MP biofilms; 0.03-0.12% in suspension culture). The co-occurrence network analysis revealed that the presence of MPs attenuated microbial synergistic interactions in the dechlorinating culture systems, which may contribute to the inhibitory effect on microbial PCB dechlorination. These findings are important for comprehensively understanding microbial dechlorination behavior and the environmental fate of PCBs in environments with co-existing PCBs and MPs and for guiding the application of in situ PCB bioremediation.
Collapse
Affiliation(s)
- Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Qiang Xu
- Ocean Academy, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Youjun Cheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Daoqiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
3
|
Khammar S, Bahramifar N, Younesi H. Preparation and surface engineering of CM-β-CD functionalized Fe 3O 4@TiO 2 nanoparticles for photocatalytic degradation of polychlorinated biphenyls (PCBs) from transformer oil. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122422. [PMID: 32200245 DOI: 10.1016/j.jhazmat.2020.122422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The aim of the present research is to investigate the efficiency of surface-modified magnetic nanoparticles for photocatalytic degradation of PCBs from transformer oil. Therefore, CMCD-Fe3O4@TiO2 was successfully produced via grafting of carboxymethyl-β-cyclodextrin (CM-β-CD) onto the core-shell titania magnetic nanoparticles surface. The photocatalytic efficiency of CMCD-Fe3O4@TiO2 for degradation of PCBs was systematically evaluated using an experimental design and the process parameters were optimized by response surface methodology (RSM). The central composite design (CCD) with four experimental parameters was used successfully in the modeling and optimization of photocatalytic efficiency in removing PCBs from transformer oil. ANOVA analysis confirmed a high R-squared value of 0.9769 describing the goodness of fit of the proposed model for the significance estimation of the individual and the interaction effects of variables. The optimal degradation yields of PCBs was achieved 83 % at a temperature of 25 °C, time of 16 min, the dosage of the catalyst of 8.35 mg and oil: ethanol ratio of 1:5. These findings encourage the practical use of CM-β-CD-Fe3O4@TiO2 as a promising and alternative photocatalyst on an industrial scale for the cleaning of organic pollutants such as PCBs due to its environmental friendliness, the benefit of magnetic separation and good reusability after five times.
Collapse
Affiliation(s)
- Sanaz Khammar
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356 Nour, Mazandaran, Iran
| | - Nader Bahramifar
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356 Nour, Mazandaran, Iran.
| | - Habibollah Younesi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356 Nour, Mazandaran, Iran
| |
Collapse
|
4
|
Saibu S, Adebusoye SA, Oyetibo GO. Aerobic bacterial transformation and biodegradation of dioxins: a review. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0294-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWaste generation tends to surge in quantum as the population and living conditions grow. A group of structurally related chemicals of dibenzofurans and dibenzo-p-dioxins including their chlorinated congeners collectively known as dioxins are among the most lethal environmental pollutants formed during different anthropogenic activities. Removal of dioxins from the environment is challenging due to their persistence, recalcitrance to biodegradation, and prevalent nature. Dioxin elimination through the biological approach is considered both economically and environmentally as a better substitute to physicochemical conventional approaches. Bacterial aerobic degradation of these compounds is through two major catabolic routes: lateral and angular dioxygenation pathways. Information on the diversity of bacteria with aerobic dioxin degradation capability has accumulated over the years and efforts have been made to harness this fundamental knowledge to cleanup dioxin-polluted soils. This paper covers the previous decades and recent developments on bacterial diversity and aerobic bacterial transformation, degradation, and bioremediation of dioxins in contaminated systems.
Collapse
|
5
|
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:40-60. [PMID: 29605643 DOI: 10.1016/j.ecoenv.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are xenobiotic compounds that persists in the environment for long-term, though its productivity is banned. Abatement of the pollutants have become laborious due to it's recalcitrant nature in the environment leading to toxic effects in humans and other living beings. Biphenyl degrading bacteria co-metabolically degrade low chlorinated PCBs using the active metabolic pathway. bph operon possess different genetic arrangements in gram positive and gram negative bacteria. The binding ability of the genes and the active sites were determined by PCB docking studies. The active site of bphA gene with conserved amino acid residues determines the substrate specificity and biodegradability. Accumulation of toxic intermediates alters cellular behaviour, biomass production and downturn the metabolic activity. Several bacteria in the environment attain unculturable state which is viable and metabolically active but not cultivable (VBNC). Resuscitation-promoting factor (Rpf) and Rpf homologous protein retrieve the culturability of the so far uncultured bacteria. Recovery of this adaptive mechanism against various physical and chemical stressors make a headway in understanding the functionality of both environmental and medically important unculturable bacteria. Thus, this paper review about the general aspects of PCBs, cellular toxicity exerted by PCBs, role of unculturable bacterial strains in biodegradation, genes involved and degradation pathways. It is suggested to extrapolate the research findings on extracellular organic matters produced in culture supernatant of VBNC thus transforming VBNC to culturable state.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Egea TC, da Silva R, Boscolo M, Rigonato J, Monteiro DA, Grünig D, da Silva H, van der Wielen F, Helmus R, Parsons JR, Gomes E. Diuron degradation by bacteria from soil of sugarcane crops. Heliyon 2017; 3:e00471. [PMID: 29322098 PMCID: PMC5753625 DOI: 10.1016/j.heliyon.2017.e00471] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 11/24/2017] [Indexed: 12/03/2022] Open
Abstract
The isolation of microorganisms from soil impacted by xenobiotic chemicals and exposing them in the laboratory to the contaminant can provide important information about their response to the contaminants. The purpose of this study was to isolate bacteria from soil with historical application of herbicides and to evaluate their potential to degrade diuron. The isolation media contained either glucose or diuron as carbon source. A total of 400 bacteria were isolated, with 68% being Gram-positive and 32% Gram-negative. Most isolates showed potential to degrade between 10 and 30% diuron after five days of cultivation; however Stenotrophomonas acidophila TD4.7 and Bacillus cereus TD4.31 were able to degrade 87% and 68%, respectively. The degradation of diuron resulted in the formation of the metabolites DCPMU, DCPU, DCA, 3,4-CAC, 4-CA, 4-CAC and aniline. Based on these results it was proposed that Pseudomonas aeruginosa TD2.3, Stenotrophomonas acidaminiphila TD4.7, B. cereus TD4.31 and Alcaligenes faecalis TG 4.48, act on 3,4-DCA and 4-CA by alkylation and dealkylation while Micrococcus luteus and Achromobacter sp follow dehalogenation directly to aniline. Growth on aniline as sole carbon source demonstrates the capacity of strains to open the aromatic ring. In conclusion, the results show that the role of microorganisms in the degradation of xenobiotics in the environment depends on their own metabolism and also on their synergistic interactions.
Collapse
Affiliation(s)
- Tassia C. Egea
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | | | - Diego A. Monteiro
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Danilo Grünig
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - Humberto da Silva
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Frans van der Wielen
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - Rick Helmus
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - John R. Parsons
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - Eleni Gomes
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
7
|
Zhang H, Jiang X, Lu L, Xiao W. Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLoS One 2015; 10:e0131450. [PMID: 26177203 PMCID: PMC4503305 DOI: 10.1371/journal.pone.0131450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/02/2015] [Indexed: 11/24/2022] Open
Abstract
Polychlorinated biphenyls (PCBs), a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L) were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail:
| | - Xiaojun Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Liping Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Wenfeng Xiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| |
Collapse
|
8
|
Passatore L, Rossetti S, Juwarkar AA, Massacci A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:189-202. [PMID: 24976127 DOI: 10.1016/j.jhazmat.2014.05.051] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 05/20/2023]
Abstract
This review summarizes the bioremediation and phytoremediation technologies proposed so far to detoxify PCB-contaminated sites. A critical analysis about the potential and limits of the PCB pollution treatment strategies by means of plants, fungi and bacteria are elucidated, including the new insights emerged from recent studies on the rhizosphere potential and on the implementation of simultaneous aerobic and anaerobic biodegradation processes. The review describes the biodegradation and phytoremediation processes and elaborates on the environmental variables affecting contaminant degradation rates, summarizing the amendments recommended to enhance PCB degradation. Additionally, issues connected with PCB toxicology, actual field remediation strategies and economical evaluation are discussed.
Collapse
Affiliation(s)
- Laura Passatore
- Institute of Agro-environment and Forest Biology (IBAF), National Research Council (CNR), Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy
| | - Asha A Juwarkar
- Environmental Biotechnology Division, National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Angelo Massacci
- Institute of Agro-environment and Forest Biology (IBAF), National Research Council (CNR), Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy.
| |
Collapse
|
9
|
Gioia R, Akindele AJ, Adebusoye SA, Asante KA, Tanabe S, Buekens A, Sasco AJ. Polychlorinated biphenyls (PCBs) in Africa: a review of environmental levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6278-89. [PMID: 23636593 DOI: 10.1007/s11356-013-1739-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/15/2013] [Indexed: 04/16/2023]
Abstract
Several studies have shown an increase in PCB sources in Africa due to leakage and wrongly disposed transformers, continuing import of e-waste from countries of the North, shipwreck, and biomass burning. Techniques used in the recycling of waste such as melting and open burning to recover precious metals make PCBs contained in waste and other semivolatile organic substances prone to volatilization, which has resulted in an increase of PCB levels in air, blood, breast milk, and fish in several regions of Africa. Consequences for workers performing these activities without adequate measures of protection could result in adverse human health effects. Recent biodegradation studies in Africa have revealed the existence of exotic bacterial strains exhibiting unique and unusual PCB metabolic capability in terms of array of congeners that can serve as carbon source and diversity of congeners attacked, marking considerable progress in the development of effective bioremediation strategies for PCB-contaminated matrices such as sediments and soils in tropical regions. Action must be taken to find and deal with the major African sources of these pollutants. The precise sources of the PCB plume should be pinned down and used to complete the pollutant inventories of African countries. These nations must then be helped to safely dispose of the potentially dangerous chemicals.
Collapse
|
10
|
Egorova DO, Plotnikiva EG, Mekhaev AV, Yatluk YG, Demakov VA, Chupakhin ON. Utilization of polychlorinated biphenyls with the use of chemical and biological processes. DOKLADY CHEMISTRY 2011. [DOI: 10.1134/s0012500811110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Egorova DO, Demakov VA, Plotnikova EG. Destruction of mixture of tri-hexa-chlorinated biphenyls by Rhodococcus genus strains. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811060044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mohammed A, Peterman P, Echols K, Feltz K, Tegerdine G, Manoo A, Maraj D, Agard J, Orazio C. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in harbor sediments from Sea Lots, Port-of-Spain, Trinidad and Tobago. MARINE POLLUTION BULLETIN 2011; 62:1324-1332. [PMID: 21529852 DOI: 10.1016/j.marpolbul.2011.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
Concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in nearshore marine surficial sediments from three locations in Trinidad. Sediments were sampled at Sea Lots on the west coast, in south Port-of-Spain Harbor, south of Sea Lots at Caroni Lagoon National Park, and on Trinidad's east coast at Manzanilla. Total PCB concentrations in Sea Lots sediments ranged from 62 to 601ng/g (dry weight {dw}), which was higher than at Caroni and Manzanilla, 13 and 8ng/g dw, respectively. Total OCP concentrations at Sea Lots were ranged from 44.5 to 145ng/g dw, compared with 13.1 and 23.8n/g (dw), for Caroni and Manzanilla respectively. The concentrations of PCBs and of some OCPs in sediments from Sea Lots were above the Canadian interim sediment quality guidelines. To date, this data is the first report on the levels of PCBs and other organochlorine compounds from Trinidad and Tobago.
Collapse
Affiliation(s)
- Azad Mohammed
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shan H, Kurtz HD, Mykytczuk N, Trevors JT, Freedman DL. Anaerobic biotransformation of high concentrations of chloroform by an enrichment culture and two bacterial isolates. Appl Environ Microbiol 2010; 76:6463-9. [PMID: 20693443 PMCID: PMC2950468 DOI: 10.1128/aem.01191-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/01/2010] [Indexed: 11/20/2022] Open
Abstract
A fermentative enrichment culture (designated DHM-1) was developed that is capable of cometabolically biotransforming high concentrations of chloroform (CF) to nontoxic end products. Two Pantoea spp. were isolated from DHM-1 that also possess this dechlorination capability. Following acclimation to increasing levels of CF, corn syrup-grown DHM-1 was able to transform over 500 mg/liter CF in the presence of vitamin B(12) (approximately 3% of CF on a molar basis) at a rate as high as 22 mg/liter/day in a mineral salts medium. CO, CO(2), and organic acids were the predominant biodegradation products, suggesting that hydrolytic reactions predominate during CF transformation. DHM-1 was capable of growing on corn syrup in the presence of high concentrations of CF (as may be present near contaminant source zones in groundwater), which makes it a promising culture for bioaugmentation. Strains DHM-1B and DHM-1T transform CF at rates similar to that of the DHM-1 enrichment culture. The ability of these strains to grow in the presence of high concentrations of CF appears to be related to alteration of membrane fluidity or homeoviscous and homeophasic adaptation.
Collapse
Affiliation(s)
- Huifeng Shan
- CH2M HILL, Atlanta, Georgia, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, Department of Biology, Laurentian University, Sudbury, Ontario, Canada, Department of Environmental Biology, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina
| | - Harry D. Kurtz
- CH2M HILL, Atlanta, Georgia, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, Department of Biology, Laurentian University, Sudbury, Ontario, Canada, Department of Environmental Biology, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina
| | - Nadia Mykytczuk
- CH2M HILL, Atlanta, Georgia, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, Department of Biology, Laurentian University, Sudbury, Ontario, Canada, Department of Environmental Biology, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina
| | - Jack T. Trevors
- CH2M HILL, Atlanta, Georgia, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, Department of Biology, Laurentian University, Sudbury, Ontario, Canada, Department of Environmental Biology, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina
| | - David L. Freedman
- CH2M HILL, Atlanta, Georgia, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, Department of Biology, Laurentian University, Sudbury, Ontario, Canada, Department of Environmental Biology, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina
| |
Collapse
|
14
|
Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes. Toxicology 2009; 262:175-83. [PMID: 19486918 DOI: 10.1016/j.tox.2009.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 01/24/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent environmental contaminants that display a complex spectrum of toxicological properties, including hepatotoxicity. Although Aroclor 1254 is ubiquitous in the environment, its potential cytotoxic effect on rat hepatocytes and the mechanism underlines its cytotoxicity are not fully investigated. Therefore, the present study was conducted to investigate: (1) the potential cytotoxicity of Aroclor 1254 in rat hepatocytes, and (2) characterization of the molecular mechanisms involved in the Aroclor 1254-induced hepatotoxicity, particularly the role of mitochondria, possibly a primary target in such event, could greatly explain the cytotoxic effect of Aroclor 1254 in rat hepatocytes. Hepatocytes were isolated from adult male albino rats and incubated for 24h in a fresh media containing 0, 20, 30, 40, 50 or 60muM of Aroclor 1254. At the end of incubation, hepatocytes and hepatocyte mitochondria were used for the assay. Our results showed cytotoxicity of Aroclor 1254 in rat hepatocytes starting at a concentration of 30muM as manifested by increased lactate dehydrogenase (LDH) leakage, decreased cell viability (MTT assay) and increased lipid peroxidation. As mitochondria are known to be one possible site of the cell damage, the effects of Aroclor 1254 on hepatocyte mitochondria was investigated. Aroclor 1254 induced reactive oxygen species (ROS) generation in hepatocyte mitochondria, inhibited mitochondrial respiratory chain complexes I and III and beta-oxidation of free fatty acids, depletion of mitochondrial antioxidant enzymes GPx and GR and the non-enzymatic antioxidant reduced glutathione, inhibited mitochondrial membrane potential (Deltapsi(m)), decreased mitochondrial aconitase and cardiolipin content, and elevated levels of cytochrome P450 subfamily, CYP1A and CYP2B activities as indicated by ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-deethylase (PROD). Therefore, we can conclude that Aroclor 1254 induced rat hepatocyte toxicity and our findings provide evidence to propose that mitochondria are one of the most important and earliest cell targets in Aroclor 1254-mediated toxicity and delineate several mitochondrial processes at least, in part, by induction of oxidative stress. These findings can be useful in future cytoprotective therapy approaches. Since mitochondrial events appear to be targeted in hepatocellular damage induced by Aroclor 1254, an antioxidant therapy targeted to mitochondria may constitute an interesting strategy to ameliorate its toxicity.
Collapse
|