1
|
Li B, Chen L, Li F, Cao Q, Yan C, Wu X, Wang K, Wu M, Gao Y, Tong H. Chlordane exposure impairs the growth and behavior of Drosophila. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115903. [PMID: 38176184 DOI: 10.1016/j.ecoenv.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Chlordane, a previously extensively utilized insecticidal pesticide, has since been prohibited, however, owing to its limited degradability, it continues to persist significantly in soil and water reservoirs, subsequently accumulating within plant and animal organisms, representing a substantial threat to human health. Despite extensive research conducted over the past few decades to investigate the toxic effects of chlordane, there remains a notable dearth of studies focusing on its impact on sleep activity. Therefore, in this study, the effects of short-term and long-term exposure to chlordane on the activity and sleep of Drosophila were investigated. When exposed to chlordane at a concentration of 1 μM, Drosophila lost body weight, decreased body size and resulted in lipid metabolism disorders. In addition, chlordane exposure altered the arousal and sleep behaviors of Drosophila. Short-term exposure to chlordane resulted in an increase in night-time sleep duration, while long-term exposure to chlordane resulted in an increase in activity and a decrease in sleep, as evidenced by a decrease in the duration of each sleep session and the appearance of sleep fragmentation. Under conditions of long-term chlordane exposure, reactive oxygen species levels were significantly up-regulated in Drosophila. Our results suggest that long-term chlordane exposure triggers oxidative stress damage in Drosophila, leading to sleep disruption. This study offers novel insights into the harmful impacts of environmental pollutants on human sleep patterns and proposes that mitigating the presence of chlordane in the environment could potentially contribute to the reduction of global sleep disorder prevalence.
Collapse
Affiliation(s)
- Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Luxi Chen
- Pediatric Emergency Observation Department, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoyao Cao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenyan Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kexin Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Kotova IB, Taktarova YV, Tsavkelova EA, Egorova MA, Bubnov IA, Malakhova DV, Shirinkina LI, Sokolova TG, Bonch-Osmolovskaya EA. Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
The growing worldwide production of synthetic plastics leads to increased amounts of plastic pollution. Even though microbial degradation of plastics is known to be a very slow process, this capacity has been found in many bacteria, including invertebrate symbionts, and microscopic fungi. Research in this field has been mostly focused on microbial degradation of polyethylene, polystyrene, and polyethylene terephthalate (PET). Quite an arsenal of different methods is available today for detecting processes of plastic degradation and measuring their rates. Given the lack of generally accepted protocols, it is difficult to compare results presented by different authors. PET degradation by recombinant hydrolases from thermophilic actinobacteria happens to be the most efficient among the currently known plastic degradation processes. Various approaches to accelerating microbial plastic degradation are also discussed.
Collapse
|
3
|
Aparicio JD, Lacalle RG, Artetxe U, Urionabarrenetxea E, Becerril JM, Polti MA, Garbisu C, Soto M. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. ENVIRONMENTAL RESEARCH 2021; 194:110666. [PMID: 33359700 DOI: 10.1016/j.envres.2020.110666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem. For this reason, a greenhouse experiment was performed using soil without or with an organic amendment. Both soils were contaminated with lindane (15 mg kg-1) and Cr(VI) (100 or 300 mg kg-1). After one month of aging, the following treatments were applied: (i) combination of bioaugmentation (actinobacteria), phytoremediation (Brassica napus), and vermiremediation (Eisenia fetida), or (ii) nanoremediation with nZVI, or (iii) combination of biological treatments and nanoremediation. After 60 days, the wellness of plants and earthworms was assessed, also, soil health was evaluated through physico-chemical parameters and biological indicators. Cr(VI) was more toxic and decreased soil health, however, it was reduced to Cr(III) by the amendment and nZVI and, to a lesser extent, by the biological treatment. Lindane was more effectively degraded through bioremediation. In non-polluted soils, nZVI had strong deleterious effects on soil biota when combined with the organic matter, but this effect was reverted in soils with a high concentration of Cr(VI). Therefore, under our experimental conditions bioremediation might be the best for soils with a moderate concentration of Cr(VI) and organic matter. The application of nZVI in soils with a high content of organic matter should be avoided except for soils with very high concentrations of Cr(VI). According to our study, among the treatments tested, the combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, 4000, Argentina
| | - Rafael G Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina.
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, C/Berreaga 1, Derio, E-48160, Spain
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| |
Collapse
|
4
|
Ru J, Huo Y, Yang Y. Microbial Degradation and Valorization of Plastic Wastes. Front Microbiol 2020; 11:442. [PMID: 32373075 PMCID: PMC7186362 DOI: 10.3389/fmicb.2020.00442] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
A growing accumulation of plastic wastes has become a severe environmental and social issue. It is urgent to develop innovative approaches for the disposal of plastic wastes. In recent years, reports on biodegradation of synthetic plastics by microorganisms or enzymes have sprung up, and these offer a possibility to develop biological treatment technology for plastic wastes. In this review, we have comprehensively summarized the microorganisms and enzymes that are able to degrade a variety of generally used synthetic plastics, such as polyethylene (PE), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), and polyethylene terephthalate (PET). In addition, we have highlighted the microbial metabolic pathways for plastic depolymerization products and the current attempts toward utilization of such products as feedstocks for microbial production of chemicals with high value. Taken together, these findings will contribute to building a conception of bio-upcycling plastic wastes by connecting the biodegradation of plastic wastes to the biosynthesis of valuable chemicals in microorganisms. Last, but not least, we have discussed the challenges toward microbial degradation and valorization of plastic wastes.
Collapse
Affiliation(s)
- Jiakang Ru
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yixin Huo
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yu Yang
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Aparicio JD, Garcia-Velasco N, Urionabarrenetxea E, Soto M, Álvarez A, Polti MA. Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and lindane. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:255-263. [PMID: 31200198 DOI: 10.1016/j.ecoenv.2019.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation using actinobacterium consortia proved to be a promising alternative for the purification of co-contaminated environments. In this sense, the quadruple consortium composed of Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0 has been able to remove significant levels of Cr(VI) and lindane from anthropogenically contaminated soils. However, the effectiveness of the bioremediation process could not be evaluated only by analytical monitoring, which is complex mainly due to the characteristics of the matrix, producing non-quantitative analyte recoveries, or interferences in the detection stage and quantification. However, the effectiveness of the bioremediation process cannot be evaluated only through analytical monitoring, which is complex due mainly to the characteristics of the matrix, to the recoveries of non-quantitative analytes or to interferences in the detection and quantification stage. For this reason, it is essential to have tools of ecological relevance to assess the biological impact of pollutants on the environment. In this context, the objective of this work was to establish the appropriate bioassays to evaluate the effectiveness of a bioremediation process of co-contaminated soils. For this, five model species were studied: four plant species (Lactuca sativa, Raphanus sativus, Lycopersicon esculentum, and Zea mays) and one animal species (Eisenia fetida). On plant species, the biomarkers evaluated were inhibition of germination (IG) and the length of hypocotyls/steam and radicles/roots of the seedling. While on E. fetida, mortality (M), weight lost, coelomocyte concentration and cell viability were tested. These bioindicators and the battery of biomarkers quantified in them showed a different level of sensitivity, from maximum to minimum: E. fetida > L. esculentum > L. sativa > R. sativus ≫>Z. mays. Therefore, E. fetida and L. esculentum and their respective biomarkers were selected to evaluate the effectiveness of the bioremediation process due to the capability of assessing the effect on the flora and the fauna of the soil, respectively. The joint application of these bioindicators in a field scale bioremediation process is a feasible tool to demonstrate the recovery of the quality and health of the soil.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Nerea Garcia-Velasco
- Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Bilbao, E-48080, Basque Country, Spain
| | - Erik Urionabarrenetxea
- Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Bilbao, E-48080, Basque Country, Spain
| | - Manu Soto
- Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Bilbao, E-48080, Basque Country, Spain
| | - Analía Álvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
6
|
Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids Surf B Biointerfaces 2019; 174:459-466. [DOI: 10.1016/j.colsurfb.2018.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022]
|
7
|
Phulpoto AH, Qazi MA, Haq IU, Phul AR, Ahmed S, Kanhar NA. Ecotoxicological assessment of oil-based paint using three-dimensional multi-species bio-testing model: pre- and post-bioremediation analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16567-16577. [PMID: 29497939 DOI: 10.1007/s11356-018-1526-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The present study validates the oil-based paint bioremediation potential of Bacillus subtilis NAP1 for ecotoxicological assessment using a three-dimensional multi-species bio-testing model. The model included bioassays to determine phytotoxic effect, cytotoxic effect, and antimicrobial effect of oil-based paint. Additionally, the antioxidant activity of pre- and post-bioremediation samples was also detected to confirm its detoxification. Although, the pre-bioremediation samples of oil-based paint displayed significant toxicity against all the life forms. However, post-bioremediation, the cytotoxic effect against Artemia salina revealed substantial detoxification of oil-based paint with LD50 of 121 μl ml-1 (without glucose) and > 400 μl ml-1 (with glucose). Similarly, the reduction in toxicity against Raphanus raphanistrum seeds germination (%FG = 98 to 100%) was also evident of successful detoxification under experimental conditions. Moreover, the toxicity against test bacterial strains and fungal strains was completely removed after bioremediation. In addition, the post-bioremediation samples showed reduced antioxidant activities (% scavenging = 23.5 ± 0.35 and 28.9 ± 2.7) without and with glucose, respectively. Convincingly, the present multi-species bio-testing model in addition to antioxidant studies could be suggested as a validation tool for bioremediation experiments, especially for middle and low-income countries. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Anwar Hussain Phulpoto
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
- US-Pak Center for Advanced Studies in Water, Institute of Water Resource Engineering and Management, Mehran University of Engineering and Technology, Jamshoro, Sindh, 76062, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Rahman Phul
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Safia Ahmed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nisar Ahmed Kanhar
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan.
| |
Collapse
|
8
|
Efficiency Optimization of Organic Pollutant Removal in Pharmaceutical Wastewater by Microwave-Assisted Fenton-Like Technology. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amm.694.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferric sulfate or cupric nitrate was utilized as catalyst, hydrogen peroxide was utilized as oxidant, with the assistant of microwave (MW), the efficiency of Fenton-like process was improved, which included increasing TOC removal and apparent reaction rate of TOC removal, reducing the catalyst dose and oxidant dose, shortening the reaction time. Under MW radiation, the technology not only utilized dissolving ferric iron, but also used ferric flocculation, which could be seen by eyes.
Collapse
|
9
|
Karci A. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. CHEMOSPHERE 2014; 99:1-18. [PMID: 24216260 DOI: 10.1016/j.chemosphere.2013.10.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 06/02/2023]
Abstract
Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity?
Collapse
Affiliation(s)
- Akin Karci
- Bogazici University, Institute of Environmental Sciences, 34342 Bebek, Istanbul, Turkey.
| |
Collapse
|