1
|
Wang J, Zhang Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. Adaptive characteristics of indigenous microflora in an organically contaminated high salinity groundwater. CHEMOSPHERE 2024; 349:140951. [PMID: 38101485 DOI: 10.1016/j.chemosphere.2023.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Salinity, a critical factor, could directly or indirectly affect the microbial community structure and diversity. Changes in salinity levels act as environmental filters that influence the transformation of key microbial species. This study investigates the adaptive characteristics of indigenous microflora in groundwater in relation to external organic pollutants under high salinity stress. A highly mineralized shallow groundwater in Northwest China was conducted as the study area, and six representative sampling points were chosen to explore the response of groundwater hydrochemical parameters and microflora, as well as to identify the tolerance mechanisms of indigenous microflora to combined pollution. The results revealed that the dominant genera found in high salinity groundwater contaminated with organic pollutants possess the remarkable ability to degrade such pollutants even under challenging high salinity conditions, including Halomonas, Pseudomonas, Halothiobacillus, Sphingomonas, Lutibacter, Aquabacterium, Thiomicrospira, Aequorivita, etc. The hydrochemical factors, including total dissolved solids (TDS), sulfide, nitrite, nitrate, oxidation reduction potential (ORP), NH3-N, Na, Fe, benzene series, phenols, and halogenated hydrocarbons, demonstrated a significant influence on microflora. High levels of sulphate and sulfide in groundwater can exhibit dual effects on microflora. On one hand, these compounds can inhibit the growth and metabolism of microorganisms. On the other hand, they can also serve as effective electron donors/receptors during the microbial degradation of organic pollutants. Microorganisms exhibit resilience to the inhibitory effects of high salinity and organic pollutants via a series of tolerance mechanisms, such as strengthening the extracellular membrane barrier, enhancing the synthesis of relevant enzymes, initiating novel biochemical reactions, improving cellular self-healing capabilities, responding to unfavorable environmental conditions by migration, and enhancing the S cycle for the microbial metabolism of organic pollutants.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
2
|
Morin S, Artigas J. Twenty Years of Research in Ecosystem Functions in Aquatic Microbial Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1867-1888. [PMID: 37401851 DOI: 10.1002/etc.5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
One of the major threats to freshwater biodiversity is water pollution including excessive loads of nutrients, pesticides, industrial chemicals, and/or emerging contaminants. The widespread use of organic pesticides for agricultural and nonagricultural (industry, gardening, etc.) purposes has resulted in the presence of their residues in various environments, including surface waters. However, the contribution of pesticides to the deterioration of freshwater ecosystems (i.e., biodiversity decline and ecosystem functions impairment) remains uncertain. Once in the aquatic environment, pesticides and their metabolites can interact with microbial communities, causing undesirable effects. The existing legislation on ecological quality assessment of water bodies in Europe is based on water chemical quality and biological indicator species (Water Framework Directive, Pesticides Directive), while biological functions are not yet included in monitoring programs. In the present literature review, we analyze 20 years (2000-2020) of research on ecological functions provided by microorganisms in aquatic ecosystems. We describe the set of ecosystem functions investigated in these studies and the range of endpoints used to establish causal relationships between pesticide exposure and microbial responses. We focus on studies addressing the effects of pesticides at environmentally realistic concentrations and at the microbial community level to inform the ecological relevance of the ecotoxicological assessment. Our literature review highlights that most studies were performed using benthic freshwater organisms and that autotrophic and heterotrophic communities are most often studied separately, usually testing the pesticides that target the main microbial component (i.e., herbicides for autotrophs and fungicides for heterotrophs). Overall, most studies demonstrate deleterious impacts on the functions studied, but our review points to the following shortcomings: (1) the nonsystematic analysis of microbial functions supporting aquatic ecosystems functioning, (2) the study of ecosystem functions (i.e., nutrient cycling) via proxies (i.e., potential extracellular enzymatic activity measurements) which are sometimes disconnected from the current ecosystem functions, and (3) the lack of consideration of chronic exposures to assess the impact of, adaptations to, or recovery of aquatic microbial communities from pesticides. Environ Toxicol Chem 2023;42:1867-1888. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Joan Artigas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
3
|
Khouni M, Hammecker C, Grunberger O, Chaabane H. Effect of salinity on the fate of pesticides in irrigated systems: a first overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90471-90488. [PMID: 37479927 DOI: 10.1007/s11356-023-28860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
This review investigates the impact of salinity on the fate of the active compounds of pesticides in a cultivated environment. Due to the over-exploitation of water resources and intensification of agriculture, salinity outbreaks are being observed more often in cultivated fields under pesticide treatments. Nevertheless, there is a poor understanding of the incidence of varying water salt loads on the behavior of pesticides' active ingredients in soil and water bodies. The present review established that water salinity can affect the diffusion of pesticides' active ingredients through numerous processes. Firstly, by increasing the vapor pressure and decreasing the solubility of the compounds, which is known as the salting-out effect, salinity can change the colligative properties of water towards molecules and the modification of exchange capacity and sorption onto the chemicals. It has also been established that the osmotic stress induced by salinity could inhibit the biodegradation process by reducing the activity of sensitive microorganisms. Moreover, soil properties like dissolved organic matter, organic carbon, clay content, and soil texture control the fate and availability of chemicals in different processes of persistence in water and soil matrix. In the same line, salinity promotes the formation of different complexes, such as between humic acid and the studied active compounds. Furthermore, salinity can modify the water flux due to soil clogging because of the coagulation and dispersion of clay particle cycles, especially when the change in salinity ranges is severe.
Collapse
Affiliation(s)
- Mariem Khouni
- Laboratory of Bioagressors and Integrated Protection in Agronomy (LR/AGR14), Department of Plant Health and Environment, National Institute of Agronomy of Tunisia, University of Carthage, Tunis, Tunisia.
| | - Claude Hammecker
- UMR LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier, France
| | - Olivier Grunberger
- UMR LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier, France
| | - Hanène Chaabane
- Laboratory of Bioagressors and Integrated Protection in Agronomy (LR/AGR14), Department of Plant Health and Environment, National Institute of Agronomy of Tunisia, University of Carthage, Tunis, Tunisia
| |
Collapse
|
4
|
Lipczynska-Kochany E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. CHEMOSPHERE 2018; 202:420-437. [PMID: 29579677 DOI: 10.1016/j.chemosphere.2018.03.104] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 05/27/2023]
Abstract
Depicted as large polymers by the traditional model, humic substances (HS) tend to be considered resistant to biodegradation. However, HS should be regarded as supramolecular associations of rather small molecules. There is evidence that they can be degraded not only by aerobic but also by anaerobic bacteria. HS presence alters biological transformations of organic pollutants in water and soil. HS, including humin, have a great potential for an application in aerobic and anaerobic wastewater treatment as well as in bioremediation. Black carbon materials, including char (biochar) and activated carbon (AC), long recognized effective sorbents, have been recently discovered to act as effective redox mediators (RM), which may significantly accelerate degradation of organic pollutants in a way similar to HS. Humic-like coating on the biochar surface has been identified. Explanation of mechanisms and possibility of applications of black carbon materials have only started to be explored. Results of many original and review papers, presented and discussed in this article, show an enormous potential for an interesting, multidisciplinary research as well as for a development of new, green technologies for biological wastewater treatment and bioremediation. Future research areas have been suggested.
Collapse
|