1
|
Abstract
Persistent organic contaminants affecting soil and groundwater pose a significant threat to ecosystems and human health. Fenton oxidation is an efficient treatment for removing these pollutants in the aqueous phase at acidic pH. However, the in-situ application of this technology for soil remediation (where pHs around neutrality are required) presents important limitations, such as catalyst (iron) availability and oxidant (H2O2) stability. The addition of chelating agents (CAs), forming complexes with Fe and enabling Fenton reactions under these conditions, so-called chelate-modified Fenton process (MF), tries to overcome the challenges identified in conventional Fenton. Despite the growing interest in this technology, there is not yet a critical review compiling the information needed for its real application. The advantages and drawbacks of MF must be clarified, and the recent achievements should be shared with the scientific community. This review provides a general overview of the application of CAs to enhance the Fenton process for the remediation of soils polluted with the most common organic contaminants, especially for a deep understanding of the activation mechanisms and influential factors. The existing shortcomings and research needs have been highlighted. Finally, future research perspectives on the use of CAs in MF and recommendations have been provided.
Collapse
|
2
|
Mohebban A, Yaghoobzadeh P, Gitipour S, Abdollahinejad M, Delarestaghi RM, Ramezani M. Applicability of an anionic-nonionic surfactant in p-cresol contaminated soil washing: Finding the optimal mixing ratio. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1207-1216. [PMID: 33312635 PMCID: PMC7721845 DOI: 10.1007/s40201-020-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/30/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
In this study, the parameters influencing p-cresol removal efficiency in soil washing method were investigated. Primarily, extraction efficiencies of three Tween series surfactants (Tween 20, Tween 60, Tween 80) with 10 mM concentration were compared. Tween 80 showed the best results since its value (55%) was 4% and 13% higher than that of Tween 60 and Tween 20. The impact of mixed surfactant on extraction rate was examined by employing a mixture of Tween 80 and one anionic surfactant (sodium dodecyl sulfate) with different molar ratio as the main washing solution. The results denoted that the molar ratio of 3:2 (SDS:Tween80) could enhance the extraction rate up to 38% compared to using SDS and Tween 80 alone. Regarding the initial p-cresol concentration in the collected sample, the cleanup level (390 mg/kg) could only be achieved using the mixed-surfactant. Thus, the minimum required surfactant concentrations to hit the target level was calculated to be 3.54 g/L of Tween 80 and 2.105 g/L of SDS (molar ratio of 0.27 SDS:Tween80). Studying the role of surfactant concentration indicated that its increment from 10 mM to 20 mM, which is way above all the reagents' critical micelle concentration (CMC), does not affect the removal rate considerably. The same results were obtained comparing the effect of washing time in three different levels (30 min, 60 min and 90 min). However, temperature showed to be a more significant parameter as it could enhance the results up to 20% (for SDS).
Collapse
Affiliation(s)
- Ali Mohebban
- Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | | | - Saeid Gitipour
- Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | | | | | - Mostafa Ramezani
- Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Tao Y, Brigante M, Zhang H, Mailhot G. Phenanthrene degradation using Fe(III)-EDDS photoactivation under simulated solar light: A model for soil washing effluent treatment. CHEMOSPHERE 2019; 236:124366. [PMID: 31344624 DOI: 10.1016/j.chemosphere.2019.124366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/14/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, for the first time, the nonionic surfactant polyoxyethylene-(20)-sorbitan monooleate (Tween 80, C64H124O26) aided soil washing effluent was treated by enhanced activation of persulfate (PS) using Fe(III)-EDDS (EDDS: ethylenediamine-N, N-disuccinic acid) complexes under simulated solar light irradiation. The performance of this system was followed via the production and reactivity of radical species (SO4-, HO, Cl2-) and degradation of phenanthrene (PHE) used as a model pollutant in soils. Different physico-chemical parameters such as the concentration of reactive species and pH were investigated through the PHE degradation efficiency. The second-order rate constants of the reactions for generated radicals with PHE and Tween 80 in solution were identified through competitive reaction experiments under steady-state conditions and application of nanosecond laser flash photolysis (LFP) as well. A kinetic approach was applied to assess the selectivity and reactivity of photo-generated radicals in aqueous medium in order to explain the observed degradation trends. This work proposes an innovative technology of management of soil washing solutions using Fe(III)-EDDS complexes and solar light for the activation of persulfate.
Collapse
Affiliation(s)
- Yufang Tao
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont, Ferrand, France; Department of Environmental Engineering, School of Resources and Environmental Science, Wuhan University, 430079, PR China
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont, Ferrand, France
| | - Hui Zhang
- Department of Environmental Engineering, School of Resources and Environmental Science, Wuhan University, 430079, PR China
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont, Ferrand, France.
| |
Collapse
|
4
|
|
5
|
Guan Z, Tang XY, Nishimura T, Katou H, Liu HY, Qing J. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil. J Environ Sci (China) 2018; 64:197-206. [PMID: 29478640 DOI: 10.1016/j.jes.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/06/2017] [Accepted: 06/09/2017] [Indexed: 06/08/2023]
Abstract
Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores.
Collapse
Affiliation(s)
- Zhuo Guan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Laboratory of Soil Physics and Soil Hydrology, Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Xiang-Yu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Taku Nishimura
- Laboratory of Soil Physics and Soil Hydrology, Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Hidetaka Katou
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8604, Japan
| | - Hui-Yun Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
6
|
Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y. Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 2017; 38:17-30. [PMID: 28423946 DOI: 10.1080/07388551.2017.1311296] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The occurrence of hydrophobic organic compounds (HOCs) in the soil has become a highly significant environmental issue. This problem has been exacerbated by the strong sorption of HOCs to the soils, which makes them unavailable for most remediation processes. More and more works show that surfactant-enhanced biological technologies offer a great potential to clear up HOCs-contaminated soils. This article is a critical review of HOCs removal from soils using Tween 80 (one of the mostly used nonionic surfactants) aided biological remediation technologies. The review begins with a discussion of the fundamentals of Tween 80-enhanced desorption of HOCs from contaminated soils, with special emphasis on the biotoxicity of Tween 80. Successful results obtained by Tween 80-enhanced microbial degradation and phytoremediation are documented and discussed in section 3 and section 4, respectively. Results show Tween 80-enhanced biotechnologies are promising for treating HOCs-contaminated soils. However, considering the fact that most of these scientific studies have only been conducted at the laboratory-scale, many improvements are required before these technologies can be scaled up to the full-scale level. Moreover, further research on mechanisms related to the interaction of Tween 80 with degrading microorganisms and the plants is in high demand.
Collapse
Affiliation(s)
- Min Cheng
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Guangming Zeng
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Danlian Huang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Chunping Yang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Cui Lai
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Chen Zhang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Yang Liu
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| |
Collapse
|
7
|
Enhanced aqueous solubility of polycyclic aromatic hydrocarbons by green diester-linked cationic gemini surfactants and their binary solutions. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Electrochemical sensor based on β-cyclodextrin incorporating ion-sensitive membrane for determination of m-cresol. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2573-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Mousset E, Huguenot D, van Hullebusch ED, Oturan N, Guibaud G, Esposito G, Oturan MA. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:354-62. [PMID: 26796745 DOI: 10.1016/j.envpol.2016.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/27/2015] [Accepted: 01/08/2016] [Indexed: 05/15/2023]
Abstract
The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (pH approximately 3) of the partially oxidized solution inhibited the general soil microbial activity during the washing cycle.
Collapse
Affiliation(s)
- Emmanuel Mousset
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France
| | - Nihal Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France
| | - Gilles Guibaud
- Université de Limoges, Groupement de Recherche Eau Sol Environnement - EA 4330, 123 Avenue A. Thomas, 87060 Limoges Cedex, France
| | - Giovanni Esposito
- University of Cassino and the Southern Lazio, Department of Civil and Mechanical Engineering, Via Di Biasio, 43 - 03043 Cassino (FR), Italy
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France.
| |
Collapse
|
10
|
Galán-Jiménez MC, Gómez-Pantoja E, Morillo E, Undabeytia T. Solubilization of herbicides by single and mixed commercial surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:262-269. [PMID: 26311582 DOI: 10.1016/j.scitotenv.2015.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
The solubilization capabilities of micellar solutions of three single surfactants, two alcohol alkoxylates B048 and B266, and the tallow alkyl ethoxylated amine ET15, and their equimolar mixed solutions toward the herbicides flurtamone (FL), metribuzin (MTZ) and mesotrione (MST) were investigated. The solubilization capacity was quantified in terms of the molar solubilization ratio (MSR), critical micellar concentration (CMC), micelle-water partition coefficient (Kmc), binding constant (K1), number of aggregation (Nagg) and Stern-Volmer constant (Ksv). The herbicides were greatly solubilized into different loci of the micelles: FL within the inner hydrophobic core, MST at the micelle/water interface and MTZ in the palisade region. Equimolar binary surfactant mixtures did not improve the solubilization of herbicides over those of single components, with the exception of MTZ by the B266/ET15 system which enhanced solubilization by 10-20%. This enhanced solubilization of MTZ was due to an increased number of micelles that arise from both the intermediate Nagg relative to that of the single surfactants and the lower CMC. The use of Ksv values was a better predictor of the solubilization of polar molecules within binary mixtures of these surfactants than the interaction parameter β(M) from regular solution theory (RST). The results herein suggest that the use of mixed surfactant systems for the solubilization of polar molecules in environmental remediation technologies may be very limited in scope, without clear advantages over the use of single surfactant systems.
Collapse
Affiliation(s)
- M C Galán-Jiménez
- Institute of Natural Resources and Agrobiology (IRNAS-CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, Spain
| | - E Gómez-Pantoja
- Institute of Natural Resources and Agrobiology (IRNAS-CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology (IRNAS-CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, Spain
| | - T Undabeytia
- Institute of Natural Resources and Agrobiology (IRNAS-CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, Spain.
| |
Collapse
|
11
|
Mao X, Jiang R, Xiao W, Yu J. Use of surfactants for the remediation of contaminated soils: a review. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:419-35. [PMID: 25528485 DOI: 10.1016/j.jhazmat.2014.12.009] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/13/2014] [Accepted: 12/06/2014] [Indexed: 05/25/2023]
Abstract
Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.
Collapse
Affiliation(s)
- Xuhui Mao
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China.
| | - Rui Jiang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
| | - Wei Xiao
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
12
|
Mousset E, Oturan N, van Hullebusch ED, Guibaud G, Esposito G, Oturan MA. Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process--study of soil washing recycling possibilities and environmental impact. WATER RESEARCH 2014; 48:306-316. [PMID: 24148921 DOI: 10.1016/j.watres.2013.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
One of the aims in soil washing treatment is to reuse the extracting agent and to remove the pollutant in the meantime. Thus, electro-Fenton (EF) degradation of synthetic soil washing solutions heavily loaded with phenanthrene was suggested for the first time. Two solubilising agents hydroxypropyl-beta-cyclodextrin (HPCD) and Tween 80(®) (TW 80) were chosen as cyclodextrin (CD) and surfactant representatives, respectively. In order to reuse HPCD and to degrade the pollutant simultaneously, the following optimal parameters were determined: [Fe(2+)] = 0.05 mM (catalyst), I = 2000 mA, and natural solution pH (around 6), without any adjustment. Only 50% of TW 80 (still higher than the critical micelle concentration (CMC)) can be reused against 90% in the case of HPCD while phenanthrene is completely degraded in the meantime, after only 180 min of treatment. This can be explained by the ternary complex formation (Fe(2+)-HPCD-organic pollutant) (equilibrium constant K = 56 mM(-1)) that allows OH to directly degrade the contaminant. This confirms that Fe(2+) plays an important role as a catalyst since it can promote formation of hydroxyl radicals near the pollutant and minimize HPCD degradation. After 2 h of treatment, HPCD/phenanthrene solution got better biodegradability (BOD5/COD = 0.1) and lower toxicity (80% inhibition of luminescence of Vibrio fischeri bacteria) than TW 80/phenanthrene (BOD5/COD = 0.08; 99% inhibition of V. fischeri bacteria). According to these data, HPCD employed in this integrated (soil washing + EF degradation) approach gave promising results in order to be reused whereas the pollutant is degraded in the meanwhile.
Collapse
Affiliation(s)
- Emmanuel Mousset
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEMLV, 77454 Marne-la-Vallée, France
| | | | | | | | | | | |
Collapse
|
13
|
Hussein TA, Ismail ZZ. Validation of Recycling Electrochemically Treated Surfactant Solutions for Washing the PAHs-Contaminated Soil. Polycycl Aromat Compd 2013. [DOI: 10.1080/10406638.2013.770405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|