1
|
Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air. Processes (Basel) 2019. [DOI: 10.3390/pr7040187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due to increasingly stringent legal regulations as well as increasing social awareness, the removal of odorous volatile organic compounds (VOCs) from air is gaining importance. This paper presents the strategy to compare selected biological methods intended for the removal of different air pollutants, especially of odorous character. Biofiltration, biotrickling filtration and bioscrubbing technologies are evaluated in terms of their suitability for the effective removal of either hydrophilic or hydrophobic VOCs as well as typical inorganic odorous compounds. A pairwise comparison model was used to assess the performance of selected biological processes of air treatment. Process efficiency, economic, technical and environmental aspects of the treatment methods are taken into consideration. The results of the calculations reveal that biotrickling filtration is the most efficient method for the removal of hydrophilic VOCs while biofilters enable the most efficient removal of hydrophobic VOCs. Additionally, a simple approach for preliminary method selection based on a decision tree is proposed. The presented evaluation strategies may be especially helpful when considering the treatment strategy for air polluted with various types of odorous compounds.
Collapse
|
2
|
Zhu J, Chen C, Li Y, Zhou L, Lan Y. Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Rybarczyk P, Szulczyński B, Gębicki J, Hupka J. Treatment of malodorous air in biotrickling filters: A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Wu H, Yan H, Quan Y, Zhao H, Jiang N, Yin C. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:409-419. [PMID: 29883876 DOI: 10.1016/j.jenvman.2018.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Pollution caused by volatile organic compounds (VOCs) and odorous pollutants in the air can produce severe environmental problems. In recent years, the emission control of VOCs and odorous pollutants has become a crucial issue owing to the adverse effect on humans and the environment. For treating these compounds, biotrickling filter (BTF) technology acts as an environment friendly and cost-effective alternative to conventional air pollution control technologies. Besides, low concentration of VOCs and odorous pollutants can also be effectively removed using BTF systems. However, the VOCs and odorants removal performance by BTF may be limited by the hydrophobicity, toxicity, and low bioavailability of these pollutants. To solve these problems, this review summarizes the design, mechanism, and common analytical methods of recent BTF advances. In addition, the operating conditions, mass transfer, packing materials and microorganisms (which are the critical parameters in a BTF system) were evaluated and discussed in view of improving the removal performance of BTFs. Further research on these specific topics, together with the combination of BTF technology with other technologies, should improve the removal performance of BTFs.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huayu Yan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huazhang Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Nanzhe Jiang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China.
| |
Collapse
|
5
|
Nie C, Ao Z, Duan X, Wang C, Wang S, An T. Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process. CHEMOSPHERE 2018; 206:432-438. [PMID: 29758500 DOI: 10.1016/j.chemosphere.2018.04.173] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Enhanced elimination of aniline in aqueous solution was achieved by coupling electrosorption of aniline and electrochemical activation of peroxydisulfate (PDS) at multi-walled carbon nanotube (MWCNT) cathode, in which a synergistic effect occurred. It was found that PDS could be effectively activated under a small voltage at MWCNT cathode owing to the specific pore structures of MWCNTs. A nonradical oxidation pathway instead of radical-based oxidation was proposed from the cathodic activation of PDS, wherein PDS molecules with a modified electronic structure was suggested to be the principal reactive species. Meanwhile, the influences of various operation parameters such as electrode potential, PDS concentration, presence of chloride ions on the elimination efficiency, and the stability of MWCNT electrode were also attempted. Therefore, the electrochemical activation of PDS by MWCNT cathode is a promising energy-saving method for the treatment of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Chunyang Nie
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 51006, China
| | - Zhimin Ao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 51006, China.
| | - Xiaoguang Duan
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Chengying Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang Ting Road, Yangzhou, 225002, China
| | - Shaobin Wang
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 51006, China
| |
Collapse
|
6
|
Wu H, Guo C, Yin Z, Quan Y, Yin C. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene. BIORESOURCE TECHNOLOGY 2018; 257:201-209. [PMID: 29501953 DOI: 10.1016/j.biortech.2018.02.108] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Toluene has high toxicity and mutagenicity, thus, the removal of toluene from air is necessary. In this study, two biotrickling filters (BTFs) were constructed and packed with conductive packing material to treat toluene waste gas. BTF-O exhibited good toluene removal performance even under high toluene inlet concentration, and over 80% of removal efficiency was observed. The elimination capacity reached 120.1 g/m3 h corresponding to an inlet concentration of 2.259 g/m3 under 61.5 s of empty bed retention time. During toluene biodegradation, the output voltage was observed in BTF-O and BTF-E, moreover BTF-E also showed slight power storage capacity. The applied voltage inhibited toluene removal and affected the bacterial community. The predominant bacterial genera in BTF-O were Acidovorax, Rhodococcus, Hydrogenophaga, Brevundimonas, Arthrobacter, Pseudoxanthomonas, Devosia, Gemmobacter, Rhizobium, Dokdonella and Pseudomonas. Genera Xanthobacter and Pelomonas accounted for the main bacterial community in BTF-E.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chunyu Guo
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Zhenhao Yin
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China; Analytical and Testing Center, Yanbian University, Yanji 133002, China.
| |
Collapse
|
7
|
Chen DZ, Zhao XY, Miao XP, Chen J, Ye JX, Cheng ZW, Zhang SH, Chen JM. A solid composite microbial inoculant for the simultaneous removal of volatile organic sulfide compounds: Preparation, characterization, and its bioaugmentation of a biotrickling filter. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:589-596. [PMID: 28892796 DOI: 10.1016/j.jhazmat.2017.08.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Volatile organic sulfide compounds (VOSCs) are usually resistant to biodegradation, thereby limiting the performance of traditional biotechnology dealing with waste gas containing such pollutants especially in mixture. In this study, a solid composite microbial inoculant (SCMI) was prepared to remove dimethyl sulfide (DMS) and propanethiol (PT). Given that the DMS degradation activity of Alcaligenes sp. SY1 is inducible and the PT-degradation activity of Pseudomonas putida S-1 is constitutive, different strategies are designed for cell cultivation to obtain high VOSC removal rates of SCMI. Compared with the microbial suspension, the prepared SCMI exhibited better storage stability at 4 and 25°C. Inoculation of the SCMI in biotrickling filters (BTFs) could effectively shorten the start-up period and enhance the removal performance. Microbial analysis by Illumina MiSeq indicated that Alcaligenes sp. SY1 and P. putida S-1 might be dominant and persistent among the microbial communities of the BTF during the operation.
Collapse
Affiliation(s)
- Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Xiang-Yu Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiao-Ping Miao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shi-Han Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
8
|
Wu CH, Lin CW. Electricity generation and kinetic aspects of a biotrickling filter-microbial fuel cell for the biofiltration of ethyl acetate vapor from waste gas. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lin J, Li L, Ding W, Zhang J, Liu J. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream. J Environ Sci (China) 2015; 37:130-138. [PMID: 26574096 DOI: 10.1016/j.jes.2015.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 06/05/2023]
Abstract
Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds.
Collapse
Affiliation(s)
- Jian Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenjie Ding
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Cheng HY, Liang B, Mu Y, Cui MH, Li K, Wu WM, Wang AJ. Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline in microbial fuel cells (MFCs). WATER RESEARCH 2015; 81:72-83. [PMID: 26043373 DOI: 10.1016/j.watres.2015.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
The challenge of energy generation from biodegradation of recalcitrant organics in microbial fuel cells (MFCs) is mainly attributed to their persistence to degradation under anaerobic condition in anode chamber of MFCs. In this work, we demonstrated that electricity generation from aniline, a typical recalcitrant organic matter under anaerobic condition was remarkably facilitated by employing oxygen into bioanode of MFCs. By exposing bioanode to air, electrons of 47.2 ± 6.9 C were recovered with aniline removal efficiency of 91.2 ± 2.2% in 144 h. Limited oxygen supply (the anodic headspace was initially filled with air and then closed) resulted in the decrease of electrons recovery and aniline removal efficiency by 52.5 ± 9.4% and 74.2 ± 2.1%, respectively, and further decline by respective 64.3 ± 4.5% and 82.7 ± 1.0% occurred under anaerobic condition. Community analysis showed that anode biofilm was predominated by several aerobic aniline degrading bacteria (AADB) and anode-respiration bacteria (ARB), which likely cooperated with each other and finally featured the energy recovery from aniline. Cyclic voltammetry indicated that anodic bacteria transferred electrons to anode mainly through electron shuttle. This study provided a new sight to acquaint us with the positive role of oxygen in biodegradation of recalcitrant organics on anode as well as electricity generation.
Collapse
Affiliation(s)
- Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, PR China
| | - Min-Hua Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
11
|
Li G, Liang Z, An T, Zhang Z, Chen X. Efficient bio-deodorization of thioanisole by a novel bacterium Brevibacillus borstelensis GIGAN1 immobilized onto different parking materials in twin biotrickling filter. BIORESOURCE TECHNOLOGY 2015; 182:82-88. [PMID: 25682227 DOI: 10.1016/j.biortech.2015.01.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Biological treatment of odorous gas is an alternative to conventional physicochemical processes. A newly-isolated and identified Brevibacillus borstelensis GIGAN1 was seeded on active carbon (AC) and ceramic particle (CP) in a twin biotrickling filter (BTF) to comparatively probe the removal performance of gaseous thioanisole, respectively. At empty bed residence time (EBRT) of 66 s, 100% of thioanisole (⩽ 3mg L(-1)) could be removed on AC; while 100% of thioanisole could only be achieved for ⩽ 1.2 mg L(-1) on CP. Further increase thioanisole concentration to 3 mg L(-1), higher elimination capacity was obtained on AC (162.51 g m(-3)h(-1)) than CP (139.93 g m(-3)h(-1)). Further, longer EBRT was also beneficial to thioanisole removal. Additionally, the biomass accumulation did not lead to the column clogging. The bio-deodorization mechanism of thioanisloe were also tentatively proposed. Overall, an unprecedented performance could be achieved by the novel GIGAN1 in BTF for thioanisole biodegradation.
Collapse
Affiliation(s)
- Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhishu Liang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhengyong Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuequan Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
|
13
|
Li G, Zhang Z, Sun H, Chen J, An T, Li B. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:147-54. [PMID: 23434489 DOI: 10.1016/j.jhazmat.2013.01.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32-306.03 μg m(-3)) were much higher than those as compressor off (0-13.31 μg m(-3)). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m(-3) as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter-photocatalytic (BTF-PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF-PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale.
Collapse
Affiliation(s)
- Guiying Li
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|