1
|
Li J, Mei Y, Ma S, Yang Q, Jiang B, Xin B, Yao T, Wu J. Internal-electric-field induced high efficient type-I heterojunction in photocatalysis-self-Fenton reaction: Enhanced H 2O 2 yield, utilization efficiency and degradation performance. J Colloid Interface Sci 2021; 608:2075-2087. [PMID: 34749154 DOI: 10.1016/j.jcis.2021.10.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Abstract
Herein, a type-I phosphorus-doped carbon nitride/oxygen-doped carbon nitride (P-C3N4/O-C3N4) heterojunction was designed for photocatalysis-self-Fenton reaction (photocatalytic H2O2 production and following Fenton reaction). In P-C3N4/O-C3N4, the photoinduced charge carriers were effectively separated with the help of internal-electric-field near the interface, ensuring the high catalytic performance. As a result, the production rate of H2O2 in an air-saturated solution was 179 μM·h-1, about 7.2, 2.5, 2.5 and 2.1 times quicker than that on C3N4, P-C3N4, O-C3N4, and phosphorus and oxygen co-doped C3N4, respectively. By taking advantage of the cascade mode in photocatalysis-self-Fenton reaction, H2O2 utilization efficiency was remarkably improved to 77.7%, about 9.0 times higher than that of traditional homogeneous Fenton reaction. Befitting from the superior yield and utilization efficiency, the degradation performance of P-C3N4/O-C3N4 was undoubtedly superior than other photocatalysts. This work well addressed two bottlenecks in traditional Fenton reaction: source of H2O2 and their low utilization efficiency, and the findings were beneficial to understand the mechanism and advantage of the photocatalysis-self-Fenton system in environmental remediation.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Yuqing Mei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Shouchun Ma
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Baifu Xin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China.
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China.
| |
Collapse
|
2
|
Richards T, Harrhy JH, Lewis RJ, Howe AGR, Suldecki GM, Folli A, Morgan DJ, Davies TE, Loveridge EJ, Crole DA, Edwards JK, Gaskin P, Kiely CJ, He Q, Murphy DM, Maillard JY, Freakley SJ, Hutchings GJ. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nat Catal 2021. [DOI: 10.1038/s41929-021-00642-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Morshed MN, Pervez MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. Statistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: a full factorial design. Sci Rep 2020; 10:16133. [PMID: 32999300 PMCID: PMC7528022 DOI: 10.1038/s41598-020-72401-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
This work focuses on the optimization of heterogeneous Fenton-like removal of organic pollutant (dye) from water using newly developed fibrous catalysts based on a full factorial experimental design. This study aims to approximate the feasibility of heterogeneous Fenton-like removal process and optionally make predictions from this approximation in a form of statistical modeling. The fibrous catalysts were prepared by dispersing zerovalent iron nanoparticles on polyester fabrics (PET) before and after incorporation of either polyamidoamine (PAMAM, -NH2) dendrimer, 3-(aminopropyl) triethoxysilane (APTES, -Si-NH2) or thioglycerol (SH). The individual effect of two main factors [pH (X1) and concentration of hydrogen peroxide-[H2O2]μl (X2)] and their interactional effects on the removal process was determined at 95% confidence level by an L27 design. The results indicated that increasing the pH over 5 decreases the dye removal efficiency whereas the rise in [H2O2]μl until equilibrium point increases it. The principal effect of the type of catalysts (PET-NH2-Fe, PET-Si-NH2-Fe, and PET-SH-Fe) did not show any statistical significance. The factorial experiments demonstrated the existence of a significant synergistic interaction effect between the pH and [H2O2]μl as expressed by the values of the coefficient of interactions and analysis of variance (ANOVA). Finally, the functionalization of the resultant fibrous catalysts was validated by electrokinetic and X-ray photoelectron spectroscopy analysis. The optimization made from this study are of great importance for rational design and scaling up of fibrous catalyst for green chemistry and environmental applications.
Collapse
Affiliation(s)
- Mohammad Neaz Morshed
- Textile Material Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, 50190, Borås, Sweden.
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France.
- Université de Lille, Nord de France, 59000, Lille, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215006, China.
| | - Md Nahid Pervez
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 50190, Borås, Sweden
| | - Nemeshwaree Behary
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France
- Université de Lille, Nord de France, 59000, Lille, France
| | - Nabil Bouazizi
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215006, China
| | - Vincent A Nierstrasz
- Textile Material Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, 50190, Borås, Sweden
| |
Collapse
|
4
|
Ouriache H, Arrar J, Namane A, Bentahar F. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation. CHEMOSPHERE 2019; 232:377-386. [PMID: 31158632 DOI: 10.1016/j.chemosphere.2019.05.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Experimental tests were carried out in solid phase reactors on a microcosm scale, to removal old petroleum pollution by Fenton like oxidation process. In order to optimize the process, parametric study and statistically designed experiment have been undertaken by considering the amount influence of hydrogen peroxide (H2O2), endogenous and zero-valent iron (Fe) and ethylene diamine tetraacetic acid (EDTA) as chelating agent. The measurement of residual total petroleum hydrocarbons for different H2O2/Fe molar ratios and pH in the vicinity of neutrality highlighted oxidation rates ranging between 29.0 and 39.3%. The Fenton like (FL) oxidation was optimal for H2O2/Fe molar ratio of 15/4. The use EDTA led to result up 72.2% for H2O2/total Fe/EDTA molar ratio of 15/4/4 after 48 h of treatment. The statistical analysis of data by factorial design, has allowed the modeling of Fenton like process performances in the operating domain. It showed that hydrogen peroxide amount, interaction effects of oxidant-catalyst, catalyst-chelating agent, and oxidant-catalyst-chelating agent, were the influential parameters. Moreover, these results suggest that endogenous iron could be used as a source of iron in the presence of the chelating agent to activate FL oxidation. A better accuracy (80.0%) was obtained by statistical analysis for H2O2/endogenous Fe/EDTA molar ratio of 20/1/1.
Collapse
Affiliation(s)
- H Ouriache
- Laboratoire des Sciences et Techniques de l'Environnement (LSTE), Ecole Nationale Polytechnique, Avenue Hassen Badi, BP 182 El Harrach, 16110, Algiers, Algeria
| | - J Arrar
- Laboratoire des Sciences et Techniques de l'Environnement (LSTE), Ecole Nationale Polytechnique, Avenue Hassen Badi, BP 182 El Harrach, 16110, Algiers, Algeria.
| | - A Namane
- Laboratoire des Sciences et Techniques de l'Environnement (LSTE), Ecole Nationale Polytechnique, Avenue Hassen Badi, BP 182 El Harrach, 16110, Algiers, Algeria
| | - F Bentahar
- Laboratoire des Phénomènes de Transfert, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El Alia Bab Ezzaouar, 16111, Algiers, Algeria
| |
Collapse
|
5
|
Lyngsie G, Krumina L, Tunlid A, Persson P. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Sci Rep 2018; 8:10834. [PMID: 30018415 PMCID: PMC6050337 DOI: 10.1038/s41598-018-29075-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
The hydroxyl radical (·OH) is a powerful oxidant that is produced in a wide range of environments via the Fenton reaction (Fe2+ + H2O2 → Fe3+ + ·OH + OH-). The reactants are formed from the reduction of Fe3+ and O2, which may be promoted by organic reductants, such as hydroquinones. The aim of this study was to investigate the extent of ·OH formation in reactions between 2,6-dimethoxyhydroquinone (2,6-DMHQ) and iron oxide nanoparticles. We further compared the reactivities of ferrihydrite and goethite and investigated the effects of the O2 concentration and pH on the generation of ·OH. The main finding was that the reactions between 2,6-DMHQ and iron oxide nanoparticles generated substantial amounts of ·OH under certain conditions via parallel reductive dissolution and catalytic oxidation reactions. The presence of O2 was essential for the catalytic oxidation of 2,6-DMHQ and the generation of H2O2. Moreover, the higher reduction potential of ferrihydrite relative to that of goethite made the former species more susceptible to reductive dissolution, which favored the production of ·OH. The results highlighted the effects of surface charge and ligand competition on the 2,6-DMHQ oxidation processes and showed that the co-adsorption of anions can promote the generation of ·OH.
Collapse
Affiliation(s)
- Gry Lyngsie
- Center of Environmental and Climate Research, Lund University, SE-223 62, Lund, Sweden
| | - Lelde Krumina
- Center of Environmental and Climate Research, Lund University, SE-223 62, Lund, Sweden.,Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Per Persson
- Center of Environmental and Climate Research, Lund University, SE-223 62, Lund, Sweden. .,Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| |
Collapse
|
6
|
Khan NA, Johnson MD, Carroll KC. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 210:31-41. [PMID: 29478672 DOI: 10.1016/j.jconhyd.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.
Collapse
Affiliation(s)
- Naima A Khan
- Water Science and Management, Plant & Environmental Science, New Mexico State University, MSC 3167, P.O. Box 30001, Las Cruces, NM 88003-8001, United States
| | - Michael D Johnson
- Department of Chemistry of and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8003, United States
| | - Kenneth C Carroll
- Water Science and Management, Plant & Environmental Science, New Mexico State University, MSC 3167, P.O. Box 30001, Las Cruces, NM 88003-8001, United States.
| |
Collapse
|
7
|
Dettmer A, Ball R, Boving TB, Khan NA, Schaub T, Sudasinghe N, Fernandez CA, Carroll KC. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 196:1-9. [PMID: 27993469 DOI: 10.1016/j.jconhyd.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/15/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3 treatment of groundwater contaminated with recalcitrant compounds.
Collapse
Affiliation(s)
- Adam Dettmer
- New Mexico State University, MSC 3Q, P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Raymond Ball
- Enchem Engineering, Inc., 151 California Street, Newton, MA 02458, USA
| | | | - Naima A Khan
- New Mexico State University, MSC 3Q, P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Tanner Schaub
- New Mexico State University, MSC 3Q, P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Nilusha Sudasinghe
- New Mexico State University, MSC 3Q, P.O. Box 30003, Las Cruces, NM 88003, USA
| | | | - Kenneth C Carroll
- New Mexico State University, MSC 3Q, P.O. Box 30003, Las Cruces, NM 88003, USA.
| |
Collapse
|
8
|
dos Santos PL, Guimarães IR, Mesquita AM, Guerreiro MC. Copper-doped akaganeite: Application in catalytic Cupro-Fenton reactions for oxidation of methylene blue. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Xu J, Armstrong RD, Shaw G, Dummer NF, Freakley SJ, Taylor SH, Hutchings GJ. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.09.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|