1
|
Wang X, Wang Y, Wang S, Hou J, Cai L, Fan G. Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples. Molecules 2022; 27:1585. [PMID: 35268684 PMCID: PMC8911876 DOI: 10.3390/molecules27051585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: This study aimed to prepare monoclonal antibodies (mAbs) with high immunoreactivity, sensitivity, and specificity for the chelate (Cr(III)-EDTA) of trivalent chromium ion (Cr(III)) and ethylenediamine tetraacetic acid (EDTA). Further, the study established an indirect competitive enzyme-linked immunosorbent assay (icELISA) for detecting the total chromium content in food, feed, and environmental samples. Methods: Hapten Cr(III)-iEDTA was synthesized by chelating Cr(III) with isothiocyanatebenzyl-EDTA (iEDTA). Immunogen Cr(III)-iEDTA-BSA formed by chelating Cr(III)-iEDTA with bovine serum albumin (BSA), and coating antigen Cr(III)-iEDTA-OVA formed by chelating Cr(III)-iEDTA with ovalbumin (OVA) were prepared using the isothiocyanate method and identified by ultraviolet spectra (UV) and inductively coupled plasma optical emission spectrometry (ICP-OES). Balb/c mice were immunized with the Cr(III)-iEDTA-BSA, and the anti Cr(III)-EDTA mAb cell lines were screened by cell fusion. The Cr(III)-EDTA mAbs were prepared by induced ascites in vivo, and their immunological characteristics were assessed. Results: The immunogen Cr(III)-iEDTA-BSA was successfully synthesized, and the molecular binding ratio of Cr(III) to BSA was 15.48:1. Three hybridoma cell lines 2A3, 2A11, and 3D9 were screened, among which 2A3 was the best cell line. The 2A3 secreted antibody was stable after six passages, the affinity constant (Ka) was 2.69 × 109 L/mol, its 50% inhibition concentration (IC50) of Cr(III)-EDTA was 8.64 μg/L, and it had no cross-reactivity (CR%) with other heavy metal ion chelates except for a slight CR with Fe(III)-EDTA (1.12%). An icELISA detection method for Cr(III)-EDTA was established, with a limit of detection (LOD) of 1.0 μg/L and a working range of 1.13 to 66.30 μg/L. The average spiked recovery intra-assay rates were 90% to 109.5%, while the average recovery inter-assay rates were 90.4% to 97.2%. The intra-and inter-assay coefficient of variations (CVs) were 11.5% to 12.6% and 11.1% to 12.7%, respectively. The preliminary application of the icELISA and the comparison with ICP-OES showed that the coincidence rate of the two methods was 100%, and the correlation coefficient was 0.987. Conclusions: The study successfully established an icELISA method that meets the requirements for detecting the Cr(III)-EDTA chelate content in food, feed, and environmental samples, based on Cr(III)-EDTA mAb, and carried out its preliminary practical application.
Collapse
Affiliation(s)
- Xiaofei Wang
- Xinxiang Institute of Engineering, College of Bioengineering, Xinxiang 453700, China; (X.W.); (S.W.)
| | - Yanan Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Shuyun Wang
- Xinxiang Institute of Engineering, College of Bioengineering, Xinxiang 453700, China; (X.W.); (S.W.)
| | - Jie Hou
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Linlin Cai
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Guoying Fan
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| |
Collapse
|
2
|
Ling S, Zhao Q, Iqbal MN, Dong M, Li X, Lin M, Wang R, Lei F, He C, Wang S. Development of immunoassay methods based on monoclonal antibody and its application in the determination of cadmium ion. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124992. [PMID: 33454572 DOI: 10.1016/j.jhazmat.2020.124992] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 05/24/2023]
Abstract
Owing to the threat of cadmium (Cd2+) to public health, it is an urgent demand to develop effective, sensitive, and rapid methods for the detection of cadmium. In this study, indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and immunochromatographic test strips (ICTS) were established for the determination of Cd2+ based on the obtained mAb with high specificity and high affinity (Kaff = 3.0 × 109 L/moL). The linear range of ic-ELISA detection was 0.03-1.11 ng/mL and 50% inhibitive concentration (IC50) of cadmium ion was determined to be 0.15 ng/mL. The visual limit of detection (vLOD) of the AuNS-based strip was 0.375 ng/mL. The vLOD of AuNF-based strip using higher intensity reporter determined to be 0.03 ng/mL, which was enhanced 12 times compared to the traditional strip. In summary, the developed immunoassays based on mAb shows great potential for monitoring the cadmium ion in environmental samples.
Collapse
Affiliation(s)
- Sumei Ling
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Zhao
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Naeem Iqbal
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingke Dong
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiulan Li
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Lin
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhi Wang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiya Lei
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caizhen He
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Zhu R, Song J, Zhou Y, Lei P, Li Z, Li HW, Shuang S, Dong C. Dual sensing reporter system of assembled gold nanoparticles toward the sequential colorimetric detection of adenosine and Cr(III). Talanta 2019; 204:294-303. [PMID: 31357297 DOI: 10.1016/j.talanta.2019.05.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 01/15/2023]
Abstract
A facile and sensitive sequential colorimetric detection strategy for adenosine and Cr3+ has been presented by using the aptamer and 11-mercaptoundecanoic acid assembled gold nanoparticles. The thiolated DNA and 11-mercaptoundecanoic acid was simultaneously assembled to the surface of gold nanoparticles in one step by gold-sulfur interaction. Adenosine aptamer was linked to functionalized gold nanaoparticles based on the strict complementary nature of the DNA base pairs. Conformational change of aptamer will be induced due to its specific binding with targets. As a result, this aptamer tethered aggregated nanoparticles underwent fast disassembly into dispersed nanoparticles upon binding of adenosine, and this distance change between particles induced a distinct solution color changing from blue to red. The dispersed particles were sensitive to Cr3+ due to the chelation effect between the carboxyl group of 11-mercaptoundecanoic acid and metal ions, and further occurred obvious aggregation accompanying with a color change from red to blue. Depended on this principle, a sensitive and selective sequential colorimetric sensor for detection of adenosine and Cr3+ was developed. The proposed colorimetric sensor exhibited wide linear ranges and low detection limits towards the detection of adenosine and Cr3+. Regarding adenosine, linear range was 1 × 10-7 ∼ 1 × 10-4 M with low detection limit of 1.8 × 10-8 M, and the naked eye detection limit was estimated as 20 μM. With regard to Cr3+, good linear relationship was ranged from 1 × 10-10 to 1 × 10-6 M with low detection limit of 1.7 × 10-11 M,and the naked eye detection limit was as low as 0.1 nM. Meanwhile, bifunctional recognition was successfully used for practical human urine samples with good recoveries from 89.0% to 112.6% for adenosine and 90.2%-113.4% for Cr3+. It also highlights the potential applications of other aptamers and ligands in cascade analysis of other analytes.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jinping Song
- College of Chemistry and Environmental Engineering, and Institute of Applied Chemistry, Shanxi Datong University, Datong, 037009, China.
| | - Ying Zhou
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Peng Lei
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zhongping Li
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shaomin Shuang
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Zeng H, Zhang D, Zhai X, Wang S, Liu Q. Enhancing the immunofluorescent sensitivity for detection of Acidovorax citrulli using fluorescein isothiocyanate labeled antigen and antibody. Anal Bioanal Chem 2017; 410:71-77. [DOI: 10.1007/s00216-017-0690-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
|
5
|
A new electrochemical sensing platform for Cr(III) determination based on nano-structured Cr(III)-imprinted polymer-modified carbon composite electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples. SENSORS 2015; 15:10088-99. [PMID: 25938200 PMCID: PMC4481923 DOI: 10.3390/s150510088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022]
Abstract
Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.
Collapse
|
7
|
Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.146] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|