1
|
Liao H, He YJ, Zhang S, Kang X, Yang X, Xu B, Magnuson JT, Wang S, Zheng C, Qiu W. Perfluorohexanesulfonic Acid (PFHxS) Induces Hepatotoxicity through the PPAR Signaling Pathway in Larval Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39680074 DOI: 10.1021/acs.est.4c07056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In recent years, the industrial substitution of long-chain per- and polyfluoroalkyl substances (PFAS) with short-chain alternatives has become increasingly prevalent, resulting in the widespread environmental detection of perfluorohexanesulfonic acid (PFHxS), a short-chain PFAS. However, there remains limited information about the potential adverse effects of PFHxS at environmental concentrations to wildlife. Here, early life stage zebrafish (Danio rerio) were exposed to environmentally relevant concentrations of PFHxS to better characterize the adverse effects of PFHxS on aquatic organisms. Nontargeted, transcriptomic analysis revealed potential hepatotoxic effects in exposed larvae, including macrovesicular and microvesicular hepatic steatosis, as well as focal liver necrosis. Morphological, histological, biochemical, and targeted transcript expression profiles further confirmed significant alterations in hepatocellular lesion numbers, liver pathological structures, relative liver size, liver biochemical parameters, and liver function genes. To validate the PPAR-mediated toxicological mechanism identified as an enriched pathway through in silico bioinformatics analysis, we tested the coexposure to an antagonist and PPAR morpholino knockdown. This intervention alleviated PFHxS-induced hepatic effects, including reductions in the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, and total triglycerides. Our results demonstrate that environmentally relevant concentrations of PFHxS can impair liver development and function in fish, which could have potential risks to aquatic organisms.
Collapse
Affiliation(s)
- Haolin Liao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying-Jie He
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Xinyuan Kang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Liu JJ, Zhang YH, Li F, Sun J, Yuan SJ, Zhang PD. Contamination status, partitioning behavior, ecological risks assessment of legacy and emerging per- and polyfluoroalkyl substances in a typical heavily polluted semi-enclosed bay, China. ENVIRONMENTAL RESEARCH 2024; 247:118214. [PMID: 38246302 DOI: 10.1016/j.envres.2024.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The contaminant status, spatial distribution, partitioning behavior, and ecological risks of 26 legacy and emerging perfluoroalkyl and polyfluoroalkyl substances (PFASs) in Laizhou Bay, China were investigated. The concentrations of ∑PFASs in surface and bottom seawater ranged from 37.2 to 222 ng/L and from 34.2 to 305 ng/L with an average of 116 ± 62.7 and 138 ± 93.8 ng/L, respectively. There were no significant differences in the average concentrations between the surface and bottom seawater (P > 0.05). Perfluorooctanoic acid (PFOA) and short-chain PFASs dominated the composition of PFASs in seawater. The concentrations of ∑PFASs in sediments ranged from 0.997 to 7.21 ng/g dry weight (dw), dominated by perfluorobutane sulfonate (PFBS), perfluorobutanoic acid (PFBA), and long-chain PFASs. The emerging alternatives of perfluoro-1-butane-sulfonamide (FBSA) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) were detected for the first time in Laizhou Bay. The ∑PFASs in seawater in the southwest of the bay were higher than those in the northeast of the bay. The ∑PFASs in sediments in the northeast sea area were higher than those in the inner area of the bay. Log Kd and log Koc values increased with increasing carbon chain length for PFASs compounds. Ecological risk assessments indicated a low ecological risk associated with HFPO-DA but a moderate risk associated with PFOA contamination in Laizhou Bay. Positive matrix factorization (PMF) analysis revealed that fluoropolymer manufacturing, metal plating plants, and textile treatments were identified as major sources contributing to PFASs contamination.
Collapse
Affiliation(s)
- Jin-Ji Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Yan-Hao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Fan Li
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, People's Republic of China
| | - Jie Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Shun-Jie Yuan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Pei-Dong Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China.
| |
Collapse
|
4
|
Li C, Zhong H, Wu J, Meng L, Wang Y, Liao C, Wang Y, He Y. Migration mechanism and risk assessment of per- and polyfluoroalkyl substances in the Ya'Er Lake oxidation pond area, China. J Environ Sci (China) 2024; 136:301-312. [PMID: 37923440 DOI: 10.1016/j.jes.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 11/07/2023]
Abstract
The migration mechanisms, sources, and environmental risks of 29 legacy and emerging perfluorinated and polyfluoroalkyl species present in an oxidation pond (Ya'Er Lake) were investigated for treating sewage based on the analysis of their occurrence and distribution. The concentration of per- and polyfluoroalkyl substances (PFAS) in pond area was between 0.30 and 63.2 ng/g dw (dry weight), with the overall average concentration of 8.00 ng/g dw. Notably, the PFAS concentrations in the surface sediments near the sewage outlet in Pond-1 (50.2 ng/g dw) and Pond-5 (average 15.1 ng/g dw) were 1-2 orders of magnitude higher than those in other areas. In general, the legacy PFAS, i.e., perfluorooctane sulfonic acid was considered to be the major pollutant in the polluted area, on average, accounting for 73.0% of the total concentration of PFAS pollutants. By evaluating the regional distribution of different PFAS homologs, the short-chain PFAS pollutants with lower Kow were found to migrate farther in both horizontal and vertical directions. The sewage outlets in Pond-1 and Pond-5 are the main pollution sources in polluted area and the emerging PFAS pollutants in Pond-5 have replaced the legacy PFAS pollutants as the main pollutants. Based on positive matrix factorization analysis, three main industrial sources of PFAS pollutants in the study area were identified: protective coating, fire-fighting, and food packaging sources. Moreover, the environmental risk assessment results showed that most study areas exhibited medium environmental risk (0.01 ≤ Risk quotient (RQ) < 1), indicating that the ecological environment risks in this area need further attention.
Collapse
Affiliation(s)
- Chang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Wu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lingyi Meng
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyang Liao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yujian He
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ulhaq ZS, Tse WKF. PFHxS Exposure and the Risk of Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2024; 15:93. [PMID: 38254982 PMCID: PMC10815161 DOI: 10.3390/genes15010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a highly prevalent environmental pollutant, often considered to be less toxic than other poly- and perfluoroalkyl substances (PFASs). Despite its relatively lower environmental impact compared to other PFASs, several studies have suggested that exposure to PFHxS may be associated with disruptions of liver function in humans. Nevertheless, the precise pathomechanisms underlying PFHxS-induced non-alcoholic fatty liver disease (NAFLD) remain relatively unclear. Therefore, this study applied our previously published transcriptome dataset to explore the effects of PFHxS exposure on the susceptibility to NAFLD and to identify potential mechanisms responsible for PFHxS-induced NAFLD through transcriptomic analysis conducted on zebrafish embryos. Results showed that exposure to PFHxS markedly aggravated hepatic symptoms resembling NAFLD and other metabolic syndromes (MetS) in fish. Transcriptomic analysis unveiled 17 genes consistently observed in both NAFLD and insulin resistance (IR), along with an additional 28 genes identified in both the adipocytokine signaling pathway and IR. These shared genes were also found within the NAFLD dataset, suggesting that hepatic IR may play a prominent role in the development of PFHxS-induced NAFLD. In conclusion, our study suggests that environmental exposure to PFHxS could be a potential risk factor for the development of NAFLD, challenging the earlier notion of PFHxS being safer as previously claimed.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med 2024; 30:56-73. [PMID: 38057226 DOI: 10.1016/j.molmed.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Collapse
Affiliation(s)
- Lissah Johnson
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
7
|
Ulhaq ZS, Tse WKF. Perfluorohexanesulfonic acid (PFHxS) induces oxidative stress and causes developmental toxicities in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131722. [PMID: 37263022 DOI: 10.1016/j.jhazmat.2023.131722] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a short-chain perfluoroalkyl substance widely used to replace the banned perfluorooctanesulfonic acid (PFOS) in different industrial and household products. It has currently been identified in the environment and human bodies; nonetheless, the possible toxicities are not well-known. Zebrafish have been used as a toxicant screening model due to their fast and transparent developmental processes. In this study, zebrafish embryos were exposed to PFHxS for five days, and various experiments were performed to monitor the developmental and cellular processes. Liquid chromatography-mass spectrometry (LC/MS) analysis confirmed that PFHxS was absorbed and accumulated in the zebrafish embryos. We reported that 2.5 µM or higher PFHxS exposure induced phenotypic abnormalities, marked by developmental delay in the mid-hind brain boundary and yolk sac edema. Additionally, larvae exposed to PFHxS displayed facial malformation due to the reduction of neural crest cell expression. RNA sequencing analysis further identified 4643 differentiated expressed transcripts in 5 µM PFHxS-exposed 5-days post fertilization (5-dpf) larvae. Bioinformatics analysis revealed that glucose metabolism, lipid metabolism, as well as oxidative stress were enriched in the PFHxS-exposed larvae. To validate these findings, a series of biological experiments were conducted. PFHxS exposure led to a nearly 4-fold increase in reactive oxygen species, possibly due to hyperglycemia and impaired glutathione balance. The Oil Red O' staining and qPCR analysis strengthens the notions that lipid metabolism was disrupted, leading to lipid accumulation, lipid peroxidation, and malondialdehyde formation. All these alterations ultimately affected cell cycle events, resulting in S and G2/M cell cycle arrest. In conclusion, our study demonstrated that PFHxS could accumulate and induce various developmental toxicities in aquatic life, and such data might assist the government to accelerate the regulatory policy on PFHxS usage.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan.
| |
Collapse
|
8
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|
9
|
Liu T, Zhu X, Huang C, Chen J, Shu S, Chen G, Xu Y, Hu Y. ERK inhibition reduces neuronal death and ameliorates inflammatory responses in forebrain-specific Ppp2cα knockout mice. FASEB J 2022; 36:e22515. [PMID: 35997299 DOI: 10.1096/fj.202200293r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yimin Hu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
10
|
Zhong H, Liu W, Li N, Ma D, Zhao C, Li J, Wang Y, Jiang G. Assessment of perfluorohexane sulfonic acid (PFHxS)-related compounds degradation potential: Computational and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129240. [PMID: 35739759 DOI: 10.1016/j.jhazmat.2022.129240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Perfluorohexane sulfonic acid (PFHxS) and PFHxS-related compounds are listed in Annex A of the Stockholm Convention without specific exemptions. Substances that potentially degrade to PFHxS are considered as their related compounds. Unfortunately, the degradation behavior of PFHxS precursors, an important basis for the corresponding chemical regulation, remains unclear. Herein, based on the hypothesis that bond dissociation enthalpy (BDE) is the determining factor for the degradation of PFHxS precursors, the BDE of PFHxS-related precursors to produceC6F13SO2-groups was calculated. In addition, quantitative structure-activity relationship models based on partial least squares, partial least squares discrimination analysis, and support vector machine algorithms were developed to predict the BDE of 48 PFHxS precursors and distinguish the precursors with different degradation potential. Subsequent photodegradation experiments demonstrated that the order of degradation rates was consistent with that predicted by theoretical models. Importantly, perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid, and not PFHxS, were detected as the degradation products of potential PFHxS precursors. Sulfonamides, phenyl unit, and other radicals in the non-nucleus part of PFHxS precursors were identified as the critical molecular segments that affect their degradation potential. Ultimately, by comparing BDE values, it was theoretically speculated that PFHxS related compounds exhibit a greater potential to generate PFHxA than PFHxS. Results in this study indicated for the first time that not all the compounds containing C6F13SO2- groups were guaranteed to degrade into PFHxS under natural conditions.
Collapse
Affiliation(s)
- Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Luo F, Chen Q, Yu G, Huo X, Wang H, Nian M, Tian Y, Xu J, Zhang J, Zhang J. Exposure to perfluoroalkyl substances and neurodevelopment in 2-year-old children: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2022; 166:107384. [PMID: 35834943 DOI: 10.1016/j.envint.2022.107384] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Humans are widely exposed to per- and polyfluoroalkyl substances (PFAS). As fetal stage is a critical window for neurodevelopment, it is important to know if in utero exposure to PFAS affects fetal neurodevelopment. However, previous human studies are both limited and inconsistent. OBJECTIVES To investigate the relationship between PFAS exposure during early pregnancy and the neurodevelopmental status at 2 years of age in a prospective cohort study. METHODS We measured 10 PFAS in maternal plasma samples collected prior to 16 weeks of gestation in the Shanghai Birth Cohort Study between 2013 and 2016. Childhood neurodevelopment was assessed at 2 years of age using the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Associations with domain specific scores for individual PFAS were assessed by multiple linear regression and binary logistic regression when scores were dichotomized. Quantile-based g-computation was used to estimate the joint effects of PFAS mixture. RESULTS A total of 2257 mother-child pairs who had both PFAS and BSID measurements were included in our analyses. The means and standard deviations of comprehensive scores were 115 ± 22, 96 ± 15 and 108 ± 15 for cognition, language, and motor, respectively. In multiple linear regressions, we observed significant negative associations of perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluoroundecanoic acid (PFUnDA) with cognitive scores; PFNA, PFDeA, PFUnDA and perfluorohexanesulfonate (PFHxS) negatively with language scores; and PFNA and PFUnDA negatively with motor scores. Quantile-based g-computation showed that PFAS mixture was significantly associated with decreased cognitive and language scores, with an estimated β of -2.1 [95% confidence interval (CI): -3.5, -0.7)] and -2.0 (95% CI: -2.9, -1.0) per one quartile increase in PFAS mixture for cognitive and language domains, respectively. PFAS mixture was associated with increased odds of low cognition (adjusted odds ratio [OR] = 1.3, 95% CI:1.0, 1.6) and language scores (OR = 1.2, 95% CI: 1.1, 1.3). CONCLUSIONS PFAS exposure during early pregnancy was significantly associated with the adverse neurodevelopmental status at 2 years of age, which raises a serious public health concern.
Collapse
Affiliation(s)
- Fei Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiaona Huo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Obstetrics and Gynecology Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hui Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Medical Psychology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China.
| |
Collapse
|
12
|
Sim KH, Lee YJ. Perfluorohexane sulfonate induces memory impairment and downregulation of neuroproteins via NMDA receptor-mediated PKC-ERK/AMPK signaling pathway. CHEMOSPHERE 2022; 288:132503. [PMID: 34626661 DOI: 10.1016/j.chemosphere.2021.132503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Perfluorohexane sulfonate (PFHxS) is a widely used industrial chemical detected in human umbilical cord blood and breast milk, and has been suggested to exhibit developmental neurotoxicity. Previous studies on mice reported that neonatal exposure to PFHxS altered neuroprotein levels in the developing brain, and caused behavioral toxicity and cognitive dysfunction in the mature brain. However, the underlying mechanisms responsible for PFHxS-induced neuroprotein dysregulation are poorly understood. In this study, we examined the effect of neonatal exposure to PFHxS on memory function using an in vivo mice model. Furthermore, we examined the levels of growth associated protein-43 (GAP-43) and calcium/calmodulin dependent protein kinase II (CaMKII) (biomarkers of neuronal development) and the involved signaling pathways using differentiated neuronal PC12 cells. PFHxS decreased cell viability, GAP-43 and CaMKII levels, and neurite formation. These effects were mediated by the NMDA receptor, PKC-α, PKC-δ, AMPK and ERK pathways. MK801, an NMDA receptor antagonist, reduced the activation of PKC-α, PKC-δ, ERK and AMPK. The activation of ERK was suppressed by pharmacological and knockdown inhibition of PKC-α and -δ. Interestingly, the AMPK pathway was selectively inhibited by inhibiting PKC-δ but not PKC-ɑ. Consistent with PFHxS-induced neuronal death, and GAP-43 and CaMKII downregulation, neonatal exposure to PFHxS caused significant memory impairment in adult mice. Collectively, these results demonstrate that PFHxS induces persistent developmental neurotoxicity, as well as GAP-43 and CaMKII downregulation via the NMDA receptor-mediated PKCs (α and δ)-ERK/AMPK pathways.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
13
|
Di Nisio A, Pannella M, Vogiatzis S, Sut S, Dall'Acqua S, Rocca MS, Antonini A, Porzionato A, De Caro R, Bortolozzi M, Toni LD, Foresta C. Impairment of human dopaminergic neurons at different developmental stages by perfluoro-octanoic acid (PFOA) and differential human brain areas accumulation of perfluoroalkyl chemicals. ENVIRONMENT INTERNATIONAL 2022; 158:106982. [PMID: 34781208 DOI: 10.1016/j.envint.2021.106982] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl substances (PFASs) are synthetic chemicals widely used in industrial and consumer products. The environmental spreading of PFASs raises concerns for their impact on human health. In particular, the bioaccumulation in humans due to environmental exposure has been reported also in total brain samples and PFAS exposure has been associated with neurodevelopmental disorders. In this study we aimed to investigate the specific PFAS bioaccumulation in different brain areas. Our data reported major accumulation in the brainstem region, which is richly populated by dopaminergic neurons (DNs), in brain autopsy samples from people resident in a PFAS-polluted area of Italy. Since DNs are the main source of dopamine (DA) in the mammalian central nervous system (CNS), we evaluated the possible functional consequences of perfluoro-octanoic acid (PFOA) exposure in a human model of DNs obtained by differentiation of human induced pluripotent stem cells (hiPSCs). Particularly, we analyzed the specific effect of the exposure to PFOA for 24 h, at the concentration of 10 ng/ml, at 3 different steps of dopaminergic differentiation: the neuronal commitment phase (DP1), the neuronal precursor phase (DP2) and the mature dopaminergic differentiation phase (DP3). Interestingly, compared to untreated cells, exposure to PFOA was associated with a reduced expression of Tyrosine Hydroxylase (TH) and Neurofilament Heavy (NFH), both markers of dopaminergic maturation at DP2 phase. In addition, cells at DP3 phase exposed to PFOA showed a severe reduction in the expression of the Dopamine Transporter (DAT), functionally involved in pre-synaptic dopamine reuptake. In this proof-of-concept study we show a significant impact of PFOA exposure, mainly on the most sensitive stage of neural dopaminergic differentiation, prompting the way for further investigations more directly relevant to risk assessment of these chemicals.
Collapse
Affiliation(s)
| | | | - Stefania Vogiatzis
- Venetian Institute of Molecular Medicine - VIMM, Department of Physics and Astronomy, University of Padova, Italy
| | - Stefania Sut
- Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padova, Italy
| | | | | | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine - VIMM, Department of Physics and Astronomy, University of Padova, Italy
| | - Luca De Toni
- Department of Medicine, University of Padova, Padova, Italy.
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Zhong H, Zheng M, Liang Y, Wang Y, Gao W, Wang Y, Jiang G. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. CHEMOSPHERE 2021; 282:131042. [PMID: 34111641 DOI: 10.1016/j.chemosphere.2021.131042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The Yellow Sea (YS), the East China Sea (ECS) and their coastal areas have undergone rapid urbanization and industrialization. These areas are important sinks for many persistent organic pollutants. In this study, the concentration of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in marine sediments from the YS and ECS were investigated. Nineteen PFAS were identified, ranging in concentration from 0.21 ng/g to 4.74 ng/g (mean: 1.60 ng/g). Legacy long-chain PFAS [e.g., perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS)] were the dominant contaminants. Alternative PFAS such as 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) propanoic acid (HFPO-DA) were identified within the detection range of 16%-100%. HFPO-DA was measured in all sediments in equivalent levels to PFOS (0.119 ng/g and 0.139 ng/g, respectively). This is the first reported occurrence of perfluoro-1-butanesulfonamide (FBSA) and HFPO-DA in marine sediments, indicating a replacement in the production of PFAS from legacy to emerging ones along with eastern coastal cities of China. The results of the potential source identification demonstrated that metal plating plants, textile treatments, fluoropolymer products, food packaging, and the degradation of volatile precursor substances were the main sources of PFAS in the ECS and YS. The environmental risk assessment based on the risk quotient demonstrated that PFOA and PFOS in the ECS and YS may present a low to medium risk at most sampling points.
Collapse
Affiliation(s)
- Huifang Zhong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yingjun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
15
|
Martínez-Quezada R, González-Castañeda G, Bahena I, Domínguez A, Domínguez-López P, Casas E, Betancourt M, Casillas F, Rodríguez J, Álvarez L, Mateos R, Altamirano M, Bonilla E. Effect of perfluorohexane sulfonate on pig oocyte maturation, gap-junctional intercellular communication, mitochondrial membrane potential and DNA damage in cumulus cells in vitro. Toxicol In Vitro 2021; 70:105011. [DOI: 10.1016/j.tiv.2020.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/23/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
|
16
|
Oseguera-López I, Pérez-Cerezales S, Ortiz-Sánchez PB, Mondragon-Payne O, Sánchez-Sánchez R, Jiménez-Morales I, Fierro R, González-Márquez H. Perfluorooctane Sulfonate (PFOS) and Perfluorohexane Sulfonate (PFHxS) Alters Protein Phosphorylation, Increase ROS Levels and DNA Fragmentation during In Vitro Capacitation of Boar Spermatozoa. Animals (Basel) 2020; 10:ani10101934. [PMID: 33096732 PMCID: PMC7588980 DOI: 10.3390/ani10101934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Perfluorinated compounds are synthetic chemicals, with a wide variety of applications like firefighting foams, food packaging, additives in paper and fabrics to avoid dyes. Perfluorooctane sulfonate and perfluorohexane sulfonate are globally distributed, and contaminates air, water, food, and dust, have toxic effects and bioaccumulate. Significant levels of these compounds have found in blood serum, breast milk, and semen of occupationally exposed and unexposed people, as well as in blood serum and organs of the domestic, farm, and wild animals. The present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation, due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes. Abstract Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) are toxic and bioaccumulative, included in the Stockholm Convention’s list as persistent organic pollutants. Due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes, the present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation. The spermatozoa capacitation was performed in supplemented TALP-Hepes media and mean lethal concentration values of 460.55 μM for PFOS, and 1930.60 μM for PFHxS were obtained. Results by chlortetracycline staining showed that intracellular Ca2+ patterns bound to membrane proteins were scarcely affected by PFOS. The spontaneous acrosome reaction determined by FITC-PNA was significantly reduced by PFOS and slightly increased by PFHxS. Both toxic compounds significantly alter the normal capacitation process from 30 min of exposure. An increase in ROS production was observed by flow cytometry and considerable DNA fragmentation by the comet assay. The immunocytochemistry showed a decrease of tyrosine phosphorylation in proteins of the equatorial and acrosomal zone of the spermatozoa head. In conclusion, PFOS and PFHxS have toxic effects on the sperm, causing mortality and altering vital parameters for proper sperm capacitation.
Collapse
Affiliation(s)
- Iván Oseguera-López
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (I.O.-L.); (P.B.O.-S.)
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (S.P.-C.); (R.S.-S.)
| | - Paola Berenice Ortiz-Sánchez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (I.O.-L.); (P.B.O.-S.)
| | - Oscar Mondragon-Payne
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| | - Raúl Sánchez-Sánchez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (S.P.-C.); (R.S.-S.)
| | - Irma Jiménez-Morales
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
| | - Reyna Fierro
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
- Correspondence: ; Tel.: +52-55-5804-6557
| |
Collapse
|
17
|
Perfluoroalkyl chemicals in neurological health and disease: Human concerns and animal models. Neurotoxicology 2020; 77:155-168. [DOI: 10.1016/j.neuro.2020.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 02/01/2023]
|
18
|
Lee YJ. Potential health effects of emerging environmental contaminants perfluoroalkyl compounds. Yeungnam Univ J Med 2018; 35:156-164. [PMID: 31620588 PMCID: PMC6784697 DOI: 10.12701/yujm.2018.35.2.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/27/2022] Open
Abstract
Environmental contaminants are one of the important causal factors for development of various human diseases. In particular, the perinatal period is highly vulnerable to environmental toxicants and resultant dysregulation of fetal development can cause detrimental health outcomes potentially affecting life-long health. Perfluoroalkyl compounds (PFCs), emerging environmental pollutants, are man-made organic molecules, which are widely used in diverse industries and consumer products. PFCs are non-degradable and bioaccumulate in the environment. Importantly, PFCs can be found in cord blood and breast milk as well as in the general population. Due to their physicochemical properties and potential toxicity, many studies have evaluated the health effects of PFCs. This review summarizes the epidemiological and experimental studies addressing the association of PFCs with neurotoxicity and immunotoxicity. While the relationships between PFC levels and changes in neural and immune health are not yet conclusive, accumulative studies provide evidence for positive associations between PFC levels and the incidence of attention deficit hyperactivity disorder and reduced immune response to vaccination both in children and adults. In conclusion, PFCs have the potential to affect human health linked with neurological disorders and immunosuppressive responses. However, our understanding of the molecular mechanism of the effects of PFCs on human health is still in its infancy. Therefore, along with efforts to develop methods to reduce exposure to PFCs, studies on the mode of action of these chemicals are required in the near future.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
19
|
Berntsen HF, Bjørklund CG, Strandabø R, Haug TM, Moldes-Anaya A, Fuentes-Lazaro J, Verhaegen S, Paulsen RE, Tasker RA, Ropstad E. PFOS-induced excitotoxicity is dependent on Ca2+ influx via NMDA receptors in rat cerebellar granule neurons. Toxicol Appl Pharmacol 2018; 357:19-32. [DOI: 10.1016/j.taap.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
|
20
|
Qi W, Clark JM, Timme-Laragy AR, Park Y. Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes. Food Chem Toxicol 2018; 120:340-345. [PMID: 30031040 DOI: 10.1016/j.fct.2018.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Perfluorobutanesulfonic acid (PFBS) is used as the replacement of perfluorooctanesulfonic acid (PFOS) since 2000 because of the concern on PFOS' persistence in the environment and the bioaccumulation in animals. Accumulating evidence has shown the correlation between the exposure to perfluorinated compounds and enhanced adipogenesis. There is no report, however, of the effect of PFBS on adipogenesis. Therefore, the present work aimed to investigate the role of PFBS in adipogenesis using 3T3-L1 adipocytes. PFBS treatment for 6 days extensively promoted the differentiation of 3T3-L1 preadipocytes to adipocytes, resulting in significantly increased triglyceride levels. In particular, the treatments of PFBS at the early adipogenic differentiation period (day 0-2) were positively correlated with increased the triglyceride accumulation on day 6. PFBS treatments significantly increased the protein and mRNA levels of the master transcription factors in adipocyte differentiation; CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), along with acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), the key proteins in lipogenesis. PFBS significantly activated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) after 4-h treatment, and PFBS' effect on triglyceride was abolished by U0126, a specific MAPK/ERK kinase (MEK) inhibitor. In conclusion, PFBS increased the adipogenesis of 3T3-L1 adipocytes, in part, via MEK/ERK-dependent pathway.
Collapse
Affiliation(s)
- Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
21
|
Chang S, Butenhoff JL, Parker GA, Coder PS, Zitzow JD, Krisko RM, Bjork JA, Wallace KB, Seed JG. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reprod Toxicol 2018; 78:150-168. [PMID: 29694846 DOI: 10.1016/j.reprotox.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
Potassium perfluorohexanesulfonate (K+PFHxS) was evaluated for reproductive/developmental toxicity in CD-1 mice. Up to 3 mg/kg-d K+PFHxS was administered (n = 30/sex/group) before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups were directly dosed with K+PFHxS for 14 days after weaning. There was an equivocal decrease in live litter size at 1 and 3 mg/kg-d, but the pup-born-to-implant ratio was unaffected. Adaptive hepatocellular hypertrophy was observed, and in 3 mg/kg-d F0 males, it was accompanied by concomitant decreased serum cholesterol and increased alkaline phosphatase. There were no other toxicologically significant findings on reproductive parameters, hematology/clinical pathology/TSH, neurobehavioral effects, or histopathology. There were no treatment-related effects on postnatal survival, development, or onset of preputial separation or vaginal opening in F1 mice. Consistent with previous studies, our data suggest that the potency of PFHxS is much lower than PFOS in rodents.
Collapse
Affiliation(s)
- Sue Chang
- 3M Company, Medical Department, St. Paul, MN 55144, United States.
| | | | - George A Parker
- Charles River Pathology Associates Inc, Durham NC 27703, United States
| | - Prägati S Coder
- Charles River Laboratories, Ashland, OH 44805, United States
| | | | - Ryan M Krisko
- 3M Company, Medical Department, St. Paul, MN 55144, United States
| | - James A Bjork
- University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Kendall B Wallace
- University of Minnesota Medical School, Duluth, MN 55812, United States
| | | |
Collapse
|
22
|
Kim SJ, Shin H, Lee YB, Cho HY. Sex-specific risk assessment of PFHxS using a physiologically based pharmacokinetic model. Arch Toxicol 2017; 92:1113-1131. [PMID: 29143853 DOI: 10.1007/s00204-017-2116-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
Perfluorohexanesulfonate (PFHxS), which belongs to the group of perfluoroalkyl and polyfluoroalkyl substances (PFASs), has been extensively used in industry and subsequently detected in the environment. Its use may be problematic, as PFHxS is known to induce neuronal cell death, and has been associated with early onset menopause in women and with attention deficit/hyperactivity disorder. Due to these impending issues, the aim of this study is to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for PFHxS in male and female rats, and apply this to a human health risk assessment. We conducted this study in vivo after the oral or intravenous administration of PFHxS in male (dose of 10 mg/kg) and female rats (dose of 0.5-10 mg/kg). The biological samples consisted of plasma, nine tissues, urine, and feces. We analyzed the sample using ultra-liquid chromatography coupled tandem mass spectrometry (UPLC-MS/MS). Our findings showed the tissue-plasma partition coefficients for PFHxS were highest in the liver. The predicted rat plasma and tissue concentrations using a simulation fitted well with the observed values. We extrapolated the PBPK model in male and female rats to a human PBPK model of PFHxS based on human physiological parameters. The reference doses of 0.711 µg/kg/day (male) and 0.159 µg/kg/day (female) and external doses of 0.007 µg/kg/day (male) and 0.006 µg/kg/day (female) for human risk assessment were estimated using Korean biomonitoring values. This study provides valuable insight into human health risk assessment regarding PFHxS exposure.
Collapse
Affiliation(s)
- Sook-Jin Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hwajin Shin
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
23
|
Lee E, Choi SY, Yang JH, Lee YJ. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:399-406. [PMID: 27382356 PMCID: PMC4930908 DOI: 10.4196/kjpp.2016.20.4.399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/23/2022]
Abstract
Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway.
Collapse
Affiliation(s)
- Eunkyung Lee
- Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan 38540, Korea
| | - So-Young Choi
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Jae-Ho Yang
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Youn Ju Lee
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| |
Collapse
|
24
|
Muschter D, Schäfer N, Stangl H, Straub RH, Grässel S. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis. PLoS One 2015; 10:e0139726. [PMID: 26431344 PMCID: PMC4592252 DOI: 10.1371/journal.pone.0139726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10(-6) M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.
Collapse
Affiliation(s)
- Dominique Muschter
- Department of Orthopedic Surgery, Experimental Orthopedics, University Hospital Regensburg, Regensburg, Bavaria, Germany
- Center for Medical Biotechnology, BioPark I, Regensburg, Bavaria, Germany
| | - Nicole Schäfer
- Department of Orthopedic Surgery, Experimental Orthopedics, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Hubert Stangl
- Department of Internal Medicine I, Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Rainer H. Straub
- Department of Internal Medicine I, Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, University Hospital Regensburg, Regensburg, Bavaria, Germany
- Center for Medical Biotechnology, BioPark I, Regensburg, Bavaria, Germany
- * E-mail:
| |
Collapse
|