1
|
Zhou W, Wang H, Zhong Q, Shao Y, Zhou D, Yu X. Characterizing 226Ra and its daughters in coastal zone groundwater of a typical human-activity affected bay: occurrence, safety, and source evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8703-8718. [PMID: 38180669 DOI: 10.1007/s11356-023-31784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Due to their extremely toxic properties, 226Ra and it daughters (222Rn, 210Pb, and 210Po) in drinking groundwater require monitoring. Recent studies have reported exceptionally high levels of natural 210Po (up to 10,000 Bq/m3), 226Ra, and 222Rn isotopes in groundwater. This study aims to provide background data on 226Ra and its daughter radionuclides in the typical agricultural-industrial Dongshan Bay (DSB) before the construction of Zhangzhou Nuclear Power Plant (Zhangzhou NPP). The measurement results indicate that no abnormally high activities of 210Po and 210Pb were detected in the investigated wells. Strong positive correlations between 210Pb and 210Po, as well as between 222Rn and 210Pb activities, suggest that the origins of 210Pb and 210Po in groundwater are strongly influenced by the decay of the parent radionuclides 222Rn and 210Pb, respectively. In the DSB coastal zone groundwater, significant deficiencies of 210Po relative to 210Pb and 210Pb relative to 222Rn were observed, providing further evidence that 210Po and 210Pb are also effectively scavenged due to their geochemical properties (specifically particle affinity) within the groundwater-aquifer system. A systematic comparison among all relevant water bodies in the DSB revealed that the activity concentrations of 210Pb and 210Po in groundwater were the highest, except for rainwater. Based on the evaluation of 210Pb sources, the results imply that submarine groundwater discharge (SGD) is an important pathway for transferring radionuclides (such as 210Pb) from land to the nearshore marine environment, even though the study area has a lower 210Pb background groundwater. By considering all the 210Pb's sources in the DSB, we found low 210Pb background groundwater discharge still needs to be taken into account for small-scale bays. This is because SGD was calculated to be one of the most important 210Pb sources in the bay during observation season. Regardless of whether the system is in a normal state or a nuclear accident emergency state, greater attention should be paid to the groundwater discharge of radionuclides into the ocean.
Collapse
Affiliation(s)
- Wenqing Zhou
- Ministry of Natural Resources, National Ocean Technology Center, Tianjin, 300112, China
- Ministry of Natural Resources, Key Laboratory of Ocean Observation Technology, Tianjin, 300112, China
| | - Hao Wang
- Ministry of Natural Resources, Third Institute of Oceanography, 184 # DaXue Road, Siming District, Xiamen, 361005, Fujian Province, China
| | - Qiangqiang Zhong
- Ministry of Natural Resources, Third Institute of Oceanography, 184 # DaXue Road, Siming District, Xiamen, 361005, Fujian Province, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Yi Shao
- Ministry of Natural Resources, National Ocean Technology Center, Tianjin, 300112, China
- Ministry of Natural Resources, Key Laboratory of Ocean Observation Technology, Tianjin, 300112, China
| | - Da Zhou
- Ministry of Natural Resources, National Ocean Technology Center, Tianjin, 300112, China
- Ministry of Natural Resources, Key Laboratory of Ocean Observation Technology, Tianjin, 300112, China
| | - Xueqing Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Tucaković I, Karanović G, Coha I, Pavičić-Hamer D, Grahek Ž. Radionuclides in commercial children's food consumed in Croatia. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
210Po characteristic in selected thermal water sources in Northern Vietnam. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThere are eight famous thermal water sources, with medium temperature, neutral pH, high ranges of TDS values located in different carbonate formations in Northern Vietnam. The chemical composition results showed the major elements present were Na, K, Mg, Ca, Sr, while trace amounts of rare earth elements (REE), Ag, As, Pb, Th, U were observed. The 210Po activity concentration and the annual committed effective doses for adults, children, and infants in all study areas were far less than 100 mBq L−1 and 0.1 mSv y−1, respectively. Some significant correlations between 210Po and other chemical components have been observed.
Collapse
|
4
|
Radiological and physicochemical properties of drinking waters consumed in the Western Black Sea Region of Turkey. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Zhong Q, Wang X, Wang Q, Zhang F, Li L, Wang Y, Du J. 222Rn, 210Pb and 210Po in coastal zone groundwater: Activities, geochemical behaviors, consideration of seawater intrusion effect, and the potential radiation human-health risk. Appl Radiat Isot 2020; 166:109386. [PMID: 32858374 DOI: 10.1016/j.apradiso.2020.109386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Groundwater quality in human-influenced coastal landscapes is receiving novel attention. Radionuclides have been recognized as another important monitoring indicator in many developed countries due to the discovery of extremely high level of natural 210Po (up to 10,000 Bq/m3) and radium and radon isotopes. This study aims to evaluate the groundwater quality in the Beibu Bulf-Guangxi coast from radiological point of view. 210Po, 210Pb and 222Rn activities in 20 wells ranged from 0.24 ± 0.05 to 6.96 ± 1.62 Bq/m3, 2.17 ± 0.12 to 13.08 ± 0.74 Bq/m3 and 1500 ± 200 to 31,800 ± 900 Bq/m3, respectively. Compared with research data of other countries, groundwaters in this area have 210Po, 210Pb and 222Rn activity within low levels. The large deficiencies of 210Po and 210Pb relative to 222Rn in groundwaters implied that 210Po and 210Pb are strong particle-reactive radionuclides and they might be controlled by similar scavenging processes in groundwaters due to a good positive correlation between 210Pb and 210Po (R2 = 0.67, p < 0.01). The concentrations of 210Po and 210Pb decreased with increasing pH values and salinity, which indicated that geochemical behaviors of 210Po and 210Pb in groundwater were influenced by seawater intrusion and pH changing. Groundwater 222Rn activity concentrations decreased with increasing salinity in coastal zone, which may be caused by dilution due to seawater intrusion or intensified 222Rn escaping from well-developed pores in coastal zone. The estimated annual ingestion doses for infants, children and adults were well below the recommended reference dose level (RDL) of 0.2-0.8 mSv/a, suggesting that consumption of analyzed groundwaters is safe from radiological point of view.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Xilong Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535011, China.
| | - Qiugui Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi Province, China
| | - Fule Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Linwei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yali Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Al-Shboul KF, Alali AE, Batayneh IM, Al-Khodire HY. Radiation hazards and lifetime risk assessment of tap water using liquid scintillation counting and high-resolution gamma spectrometry. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 178-179:245-252. [PMID: 28915436 DOI: 10.1016/j.jenvrad.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
In this work, two complementary techniques, viz. liquid scintillation counting and high-resolution gamma spectrometry are utilized to analyze radionuclides concentrations in tap water of Irbid governorate, Jordan, and study their correlation. Gross alpha and gross beta concentrations, in the tap water samples collected from the nine districts of Irbid governorate, ranged from <82 to 484 mBq/L with a mean of 295 mBq/L and from <216 to 984 mBq/L with a mean of 611 mBq/L, respectively. Furthermore, gamma spectrometry analysis, for the tap water samples, shows that the activity concentrations of 226Ra, 232Th, and 40K ranged between <19 and 302 mBq/L, 24 to 119 mBq/L, and <101 to 342 mBq/L, respectively. There was a weak or even no correlation among the identified natural radionuclides with no trace of artificial radioactivity. In addition, the results of both techniques show that storing tap water in drilled wells leads to higher levels of radioactivity concentrations beyond the international permissible limits. Furthermore, the average lifetime risk and annual effective dose received by age-grouped inhabitants due to direct and indirect tap water consumption are evaluated, where most of the received dose is attributed to 226Ra.
Collapse
Affiliation(s)
- K F Al-Shboul
- Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - A E Alali
- Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - I M Batayneh
- Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - H Y Al-Khodire
- Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
7
|
Annamalai SK, Arunachalam KD, Selvaraj R. Natural radionuclide dose and lifetime cancer risk due to ingestion of fish and water from fresh water reservoirs near the proposed uranium mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15427-15443. [PMID: 28508337 DOI: 10.1007/s11356-017-9111-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Ten sampling locations in Nagarjuna Sagar Dam have been selected to assess the suitability of the reservoir water for human consumption. The sediment, water, and fish samples were collected and analyzed for radionuclide (238U, 232Th, 210Po, 226Ra, 210Pb) and physicochemical parameters like pH, TOC, total hardness, alkalinity, DO, cation exchange capacity, and particle size. The spatial variations among the radionuclides (238U, 232Th, 210Po, 226Ra, 210Pb) in water and bottom sediments of Nagarjuna Sagar Dam were determined. The uranium concentration in the sediment and water was in BDL (<0.5 ppb). The maximum permissible limits in water samples of the analyzed radionuclides are 238U-10 Bq/l, 210Po-0.1 Bq/l, 226Ra-1 Bq/l, and 210Pb-0.1 Bq/l. The radionuclides in our water samples were approximately 50 times far below the recommended limit. The ingestion of water and fish would not pose any significant radiological impact on health or cancer risk to the public, implicating that the fishes from Nagarjuna Sagar Dam reservoir are safe for human consumption except the fisherman community.
Collapse
Affiliation(s)
- Sathesh Kumar Annamalai
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Rajaram Selvaraj
- Environmental Survey Laboratories, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
| |
Collapse
|
8
|
Benedik L, Rovan L, Klemenčič H, Gantar I, Prosen H. Natural radioactivity in tap waters from the private wells in the surroundings of the former Žirovski Vrh uranium mine and the age-dependent dose assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12062-12072. [PMID: 25874436 DOI: 10.1007/s11356-015-4481-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Activity concentration of (238)U, (234)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in tap water from selected springs and private wells in the area of the former uranium mine at Žirovski Vrh were determined. A total of 22 tap water samples were collected at consumer's houses. The results show that the activity concentrations of uranium in water samples are in range (0.17-372) and (0.22-362) mBq L(-1) for (238)U and (234)U, respectively. Radium activity concentrations are in range (0.14-16.7) and (0.9-11.7) mBq L(-1) for (226)Ra and (228)Ra, respectively. (210)Po activity concentration is in range (0.28-8.0) mBq L(-1) and can be regarded as the lowest amongst all analysed radionuclides. The range for (210)Pb is (0.5-24.6) mBq L(-1). Based on the results obtained for activity concentrations of six radionuclides, the committed effective dose for three different age groups of population were estimated. It was found that the committed effective dose was well below the recommended value of 100 μSv year(-1), ranging from 2.3 to 34.3 μSv year(-1) for adults, from 3.5 to 32.0 μSv year(-1) for children (7-12 years) and from 3.0 to 23.3 μSv year(-1) for infants.
Collapse
|