1
|
He S, Li P, Li ZH. Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian. CHEMOSPHERE 2021; 269:128711. [PMID: 33121818 DOI: 10.1016/j.chemosphere.2020.128711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) is widely used as a plastic stabilizer, insecticide and the most common fungicide in antifouling coatings. This paper reviewed the main literature evidences on the morphological and physiological changes of animal endocrine system induced by TPT, with emphasis on the research progress of TPT metabolism, neurological and reproductive regulation in animal endocrine system. Similar to tributyltin (TBT), the main effects of TPT on the potential health risks of 25 species of animals, from aquatic animals to mammals, are not only related to exposure dose and time, but also to age, sex and exposed tissue/cells. Moreover, current studies have shown that TPT can directly damage the endocrine glands, interfere with the regulation of neurohormones on endocrine function, and change hormone synthesis and/or the bioavailability (i.e., in the retinoid X receptor and peroxisome proliferator-activated receptor gamma RXR-PPARγ) in target cells. Importantly, TPT can cause biochemical and morphological changes of gonads and abnormal production of steroids, both of which are related to reproductive dysfunction, for example, the imposex of aquatic animals and the irregular estrous cycle of female mammals or spermatogenic disorders of male animals. Therefore, TPT should indeed be regarded as a major endocrine disruptor, which is essential for understanding the main toxic effects on different tissues and their pathogenic effects on endocrine, metabolism, neurological and reproductive dysfunction.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
2
|
Sham RCT, Ho KKY, Zhou GJ, Li Y, Wang X, Leung KMY. Occurrence, ecological and human health risks of phenyltin compounds in the marine environment of Hong Kong. MARINE POLLUTION BULLETIN 2020; 154:111093. [PMID: 32319922 DOI: 10.1016/j.marpolbul.2020.111093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) has been known as one of the most toxic compounds being released into the marine environment by anthropogenic means. This study assessed the contamination statuses of TPT and its two major degradants, i.e., monophenyltin and diphenyltin, in seawater, sediment and biota samples from marine environments of Hong Kong, a highly urbanized and densely populated city, and evaluated their ecological and human health risks. The results showed that the Hong Kong's marine environments were heavily contaminated with these chemicals, especially for TPT. Concentration ranges of TPT in seawater, sediment and biota samples were 3.8-11.7 ng/L, 71.8-91.7 ng/g d.w., and 9.6-1079.9 ng/g w.w., respectively. As reflected by high hazard quotients (1.7-5.3 for seawaters; 46.1-59.0 for sediments), TPT exhibited high ecological and human health risks. Our results are essential for the future management and control of anthropogenic TPT use in antifouling paints and as biocides in agriculture.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin King Yan Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Nonaka K, Kotani N, Akaike H, Shin MC, Yamaga T, Nagami H, Akaike N. Xenon modulates synaptic transmission to rat hippocampal CA3 neurons at both pre- and postsynaptic sites. J Physiol 2019; 597:5915-5933. [PMID: 31598974 DOI: 10.1113/jp278762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Xenon (Xe) non-competitively inhibited whole-cell excitatory glutamatergic current (IGlu ) and whole-cell currents gated by ionotropic glutamate receptors (IAMPA , IKA , INMDA ), but had no effect on inhibitory GABAergic whole-cell current (IGABA ). Xe decreased only the frequency of glutamatergic spontaneous and miniature excitatory postsynaptic currents and GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude or decay times of these synaptic responses. Xe decreased the amplitude of both the action potential-evoked excitatory and the action potential-evoked inhibitory postsynaptic currents (eEPSCs and eIPSCs, respectively) via a presynaptic inhibition in transmitter release. We conclude that the main site of action of Xe is presynaptic in both excitatory and inhibitory synapses, and that the Xe inhibition is much greater for eEPSCs than for eIPSCs. ABSTRACT To clarify how xenon (Xe) modulates excitatory and inhibitory whole-cell and synaptic responses, we conducted an electrophysiological experiment using the 'synapse bouton preparation' dissociated mechanically from the rat hippocampal CA3 region. This technique can evaluate pure single- or multi-synapse responses and enabled us to accurately quantify how Xe influences pre- and postsynaptic aspects of synaptic transmission. Xe inhibited whole-cell glutamatergic current (IGlu ) and whole-cell currents gated by the three subtypes of glutamate receptor (IAMPA , IKA and INMDA ). Inhibition of these ionotropic currents occurred in a concentration-dependent, non-competitive and voltage-independent manner. Xe markedly depressed the slow steady current component of IAMPA almost without altering the fast phasic IAMPA component non-desensitized by cyclothiazide. It decreased current frequency without affecting the amplitude and current kinetics of glutamatergic spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents. It decreased the amplitude, increasing the failure rate (Rf) and paired-pulse rate (PPR) without altering the current kinetics of glutamatergic action potential-evoked excitatory postsynaptic currents. Thus, Xe has a clear presynaptic effect on excitatory synaptic transmission. Xe did not alter the GABA-induced whole-cell current (IGABA ). It decreased the frequency of GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude and current kinetics. It decreased the amplitude and increased the PPR and Rf of the GABAergic action potential-evoked inhibitory postsynaptic currents without altering the current kinetics. Thus, Xe acts exclusively at presynaptic sites at the GABAergic synapse. In conclusion, our data indicate that a presynaptic decrease of excitatory transmission is likely to be the major mechanism by which Xe induces anaesthesia, with little contribution of effects on GABAergic synapses.
Collapse
Affiliation(s)
- Kiku Nonaka
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Min-Chul Shin
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Hideaki Nagami
- Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan
| |
Collapse
|
4
|
Intra-axonal Ca 2+ mobilization contributes to triphenyltin-induced facilitation in glycinergic transmission of rat spinal neurons. Toxicol In Vitro 2018; 55:11-14. [PMID: 30439410 DOI: 10.1016/j.tiv.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/12/2018] [Accepted: 11/11/2018] [Indexed: 11/22/2022]
Abstract
Triphenyltin (TPT) is an organotin compound causing environmental hazard to many wild creatures. Our previous findings show that TPT increases of the frequency of spontaneous glycinergic inhibitory postsynaptic currents (sIPSCs) in rat spinal neurons without changing the amplitude and 1/e decay time. In our study, the effects of 2-aminoethoxydiphenyl borate (2-APB), dantrolene sodium, and thapsigargin on sIPSC frequency were examined to reveal the contribution of intra-axonal Ca2+ mobilization by adding TPT. 2-APB considerably attenuated the TPT-induced facilitation of sIPSC frequency while dantrolene almost completely masked the TPT effects, suggesting that the TPT-induced synaptic facilitation results from the activation of both IP3 and ryanodine receptors on endoplasmic reticulum (ER) membrane, though inositol triphosphate (IP3) receptor is less sensitive to TPT. Thapsigargin itself significantly increased the sIPSC frequency without affecting the current amplitude and decay time. Successive addition of TPT could not further increase the sIPSC frequency in the presence of thapsigargin, indicating that thapsigargin completely masked the facilitatory action of TPT. Results suggest that TPT activates the IP3 and ryanodine receptors while TPT inhibits the Ca2+-pump of ER membranes, resulting in the elevation of intra-axonal Ca2+ levels, leading to the increase of spontaneous glycine release from synaptic vesicles.
Collapse
|
5
|
de Castro TF, Saalfeld GQ, Varela AS, Padilha FF, Santos KS, Pires DM, Pereira JR, Corcini CD, Colares EP. Triphenyltin exposition induces spermatic parameter alters of Calomys laucha species. CHEMOSPHERE 2018; 211:1176-1182. [PMID: 30223333 DOI: 10.1016/j.chemosphere.2018.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
The present study aims to evaluate the influence of triphenyltin (TPT) exposure on reproductive physiology on Calomys laucha species, since this species inhabits regions susceptible to exposure to this contaminant. Animals exposed to the highest dose (10.0 mg/kg) presented signs of severe intoxication in only 7 days of exposure, demonstrating a higher sensitivity of this species to triphenyltin. The 10.0 mg TPT/kg dose was analyzed separately for short-term exposure and results suggest that exposure to this dose was severely detrimental to sperm activity. Among the main results obtained in the evaluation of sperm kinetics, a reduction in total motility was observed from the 0.5 mg TPT/kg group, accentuated according to the increase in the doses of TPT. In progressive motility, there was a decrease from the dose of 0.5 mg TPT/kg and maintained the plateau until the dose of 5.0 mg TPT/kg. It was also observed an increase in the distances and velocities average path, rectilinear and curvilinear in doses of 2.5 and 5.0 mg/kg. From the flow cytometry, evaluation a decrease in mitochondrial functionality was observed as the dose increased. Increased membrane fluidity was also observed from the 5.0 mg TPT/kg dose and the acrosome reaction presented higher values at doses of 0.5 and 5.0 mg TPT/kg. We can conclude that TPT causes impairment of the sperm activity, reducing it in individuals exposed in the adult phase.
Collapse
Affiliation(s)
- Tiane Ferreira de Castro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Graciela Quintana Saalfeld
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Antonio Sergio Varela
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | | | | | - Diego Martins Pires
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jessica Ribeiro Pereira
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Carine Dahl Corcini
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elton Pinto Colares
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
6
|
Noma K, Akaike H, Kurauchi Y, Katsuki H, Oyama Y, Akaike N. Effects of triphenyltin on glycinergic transmission on rat spinal neurons. ENVIRONMENTAL RESEARCH 2018; 163:186-193. [PMID: 29453030 DOI: 10.1016/j.envres.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Glycine is a fast inhibitory transmitter like γ-aminobutyric acid in the mammalian spinal cord and brainstem, and it is involved in motor reflex, nociception, and neuronal development. Triphenyltin (TPT) is an organometallic compound causing environmental hazard to many wild creatures. Our previous findings show that TPT ultimately induces a drain and/or exhaustion of glutamate in excitatory presynaptic nerve terminals, resulted in blockage of neurotransmission as well as methylmercury. Therefore, we have investigated the neurotoxic mechanism how TPT modulates inhibitory glycinergic transmission in the synaptic bouton preparation of rat isolated spinal neurons using a patch clamp technique. TPT at environmentally relevant concentrations (3-300 nM) significantly increased the number of frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (sIPSC and mIPSC) without affecting the current amplitude and decay time. The TPT effects were also observed in external Ca2+-free solution containing tetrodotoxin (TTX) but removed in Ca2+-free solution with both TTX and BAPTA-AM (Ca2+ chelator). On the other hand, the amplitude of glycinergic evoked inhibitory postsynaptic currents (eIPSCs) increased with decreasing failure rate (Rf) and paired pulse ratio (PPR) in the presence of 300 nM TPT. At a high concentration (1 µM), TPT completely blocked eIPSCs after a transient facilitation. Overall, these results suggest that TPT directly acts transmitter-releasing machinery in glycinergic nerve terminals. Effects of TPT on the nerve terminals releasing fast transmitters were greater in the order of glycinergic > glutamatergic > GABAergic ones. Thus, TPT is supposed to cause a strong synaptic modulations on glycinergic neurotransmission in wild creatures.
Collapse
Affiliation(s)
- Kazuki Noma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuo Oyama
- Laboratory of Bioassessment, Faculty of Bioscience and Bioindustry, Tokushima University, Minami-Josanjima 2-1, Tokushima 770-8501, Japan
| | - Norio Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| |
Collapse
|
7
|
Ferraz da Silva I, Freitas-Lima LC, Graceli JB, Rodrigues LCDM. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review. Front Endocrinol (Lausanne) 2018; 8:366. [PMID: 29358929 PMCID: PMC5766656 DOI: 10.3389/fendo.2017.00366] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC) present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs). OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood-brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.
Collapse
Affiliation(s)
- Igor Ferraz da Silva
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Leandro Ceotto Freitas-Lima
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | - Jones Bernardes Graceli
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | - Lívia Carla de Melo Rodrigues
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
8
|
Wakita M, Shoudai K, Oyama Y, Akaike N. 4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) modifies synaptic transmission in hippocampal CA3 neurons of rats. CHEMOSPHERE 2017; 184:337-346. [PMID: 28605704 DOI: 10.1016/j.chemosphere.2017.05.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an alternative to organotin antifoulants, such as tributyltin and triphenyltin. Since DCOIT is found in harbors, bays, and coastal areas worldwide, this chemical compound may have some impacts on ecosystems. To determine whether DCOIT possesses neurotoxic activity by modifying synaptic transmission, we examined the effects of DCOIT on synaptic transmission in a 'synaptic bouton' preparation of rat brain. DCOIT at concentrations of 0.03-1 μM increased the amplitudes of evoked synaptic currents mediated by GABA and glutamate, while it reduced the amplitudes of these currents at 3-10 μM. However, the currents elicited by exogenous applications of GABA and glutamate were not affected by DCOIT. DCOIT at 1-10 μM increased the frequency of spontaneous synaptic currents mediated by GABA. It also increased the frequency of glutamate-mediated spontaneous currents at0.3-10 μM. The frequencies of miniature synaptic currents mediated by GABA and glutamate, observed in the presence of tetrodotoxin under external Ca2+-free conditions, were increased by 10 μM DCOIT. With the repetitive applications of DCOIT, the frequency of miniature synaptic currents mediated by glutamate was not increased by the second and third applications of DCOIT. Voltage-dependent Ca2+ channels were not affected by DCOIT, but DCOIT slowed the inactivation of voltage-dependent Na+ channels. These results suggest that DCOIT increases Ca2+ release from intracellular Ca2+ stores, resulting in the facilitation of both action potential-dependent and spontaneous neurotransmission, possibly leading to neurotoxicity.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryokai, Kumamoto Kinoh Hospital, Kumamoto, 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, Kumamoto, 861-5598, Japan.
| | - Kiyomitsu Shoudai
- Research Division for Life Science, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Yasuo Oyama
- Laboratory of Cellular Signaling, Faculty of Biosciences and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan.
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryokai, Kumamoto Kinoh Hospital, Kumamoto, 860-8518, Japan; Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|