1
|
Ren J, Jin T, Li R, Zhong YY, Xuan YX, Wang YL, Yao W, Yu SL, Yuan JT. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:847-866. [PMID: 37920972 DOI: 10.1080/1062936x.2023.2269855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
Collapse
Affiliation(s)
- J Ren
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - T Jin
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - R Li
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y Y Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y X Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y L Wang
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - W Yao
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - S L Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China
| | - J T Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Yu S, Ren J, Lv Z, Li R, Zhong Y, Yao W, Yuan J. Prediction of the endocrine-disrupting ability of 49 per- and polyfluoroalkyl substances: In silico and epidemiological evidence. CHEMOSPHERE 2022; 290:133366. [PMID: 34933031 DOI: 10.1016/j.chemosphere.2021.133366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The toxic effects of per- and polyfluoroalkyl substances (PFASs) on humans are mediated by nuclear hormone receptors (NHRs). However, data on the interaction of PFASs and NHRs is limited. Endocrine Disruptome, an inverse docking tool, was used in this study to simulate the docking of 49 common PFASs with 14 different types of human NHRs. According to the findings, 25 PFASs have a high or moderately high probability of binding to more than five NHRs, with androgen receptor (AR) and mineralocorticoid receptor (MR) being the most likely target NHRs. Molecular docking analyses revealed that the binding modes of PFASs with the two NHRs were similar to those of their corresponding co-crystallized ligands. PFASs, in particular, may disrupt the endocrine system by binding to MR. This finding is consistent with epidemiological research that has linked PFASs to MR-related diseases. Our findings may contribute to a better understanding of the health risks posed by PFASs.
Collapse
Affiliation(s)
- Shuling Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, PR China
| | - Jing Ren
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhenxia Lv
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Rui Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuyan Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wu Yao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jintao Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. In silico prediction of nuclear receptor binding to polychlorinated dibenzofurans and its implication on endocrine disruption in humans and wildlife. Curr Res Toxicol 2021; 2:357-365. [PMID: 34693345 PMCID: PMC8515090 DOI: 10.1016/j.crtox.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Polychlorinated dibenzofurans (PCDFs) are known to cause endocrine disruption in humans and wildlife but the mechanisms underlying this disruption have not been adequately investigated. In this paper, the susceptibility of the endocrine system to disruption by PCDF congeners via nuclear receptor binding was studied using molecular docking simulation. Findings revealed that some PCDF congeners exhibit high probabilities of binding to androgen receptor in its agonistic and antagonistic conformations. In depth molecular docking analysis of the receptor-ligand complexes formed by PCDFs with androgen receptor in its agonistic and antagonistic conformations showed that, these complexes were stabilized by electrostatic, van der Waals, pi-effect and hydrophobic interactions. It was also observed that PCDF molecules mimic the modes of interaction observed in androgen-testosterone and androgen-bicalutamide complexes, utilizing between 65 and 83% of the amino acid residues used by the co-crystallized ligands for binding. This computational study suggests that some PCDF congeners may act as agonists and antagonists of androgen receptor in humans and wildlife via inapproprate binding to the receptor.
Collapse
Affiliation(s)
- Lukman K. Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
4
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. A computational insight into endocrine disruption by polychlorinated biphenyls via non-covalent interactions with human nuclear receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112086. [PMID: 33640727 DOI: 10.1016/j.ecoenv.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Production of polychlorinated biphenyls (PCBs) was banned a long time ago because of their harmful health effects but humans continue to be exposed to residual PCBs in the environment. In this study, the susceptibility of human nuclear receptors to binding by PCBs was investigated using molecular docking simulation. Findings revealed that PCBs belonging to ortho-substituted, mono-ortho-substituted and non-ortho-substituted congeners could bind to agonistic conformations of androgen (AR), estrogen (ER α and ER β), glucocorticoid (GR) and thyroid hormone (TR α and TR β) receptors as well as antagonistic conformation of androgen receptor (AR an) but only ortho-substituted and mono-ortho-substituted PCBs could bind to estrogen receptors in their antagonistic conformations (ER α an and ER β an). Further molecular docking analyses showed that PCBs mimic the modes of interaction observed for the co-crystallized ligands in the crystal structures of the affected receptors, utilizing 81%, 83%, 78%, 60%, 75%, 60%, 86%, 100% and 75% of the amino acid residues utilized by the co-crystallized ligands for binding in AR, AR an, ER α, ER α an, ER β, ER β an, GR, TR α and TR β respectively. This computational study suggests that PCBs may cause endocrine disruption via formation of non-covalent interactions with androgen, estrogen, glucocorticoid and thyroid hormone receptors.
Collapse
Affiliation(s)
- Lukman K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Chemistry, Bauchi State University, Gadau, Nigeria.
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Stephen E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
5
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Theoretical study on endocrine disrupting effects of polychlorinated dibenzo‐
p
‐dioxins using molecular docking simulation. J Appl Toxicol 2020; 41:233-246. [DOI: 10.1002/jat.4039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Lukman K. Akinola
- Department of Chemistry Ahmadu Bello University Zaria Nigeria
- Department of Chemistry Bauchi State University Gadau Nigeria
| | - Adamu Uzairu
- Department of Chemistry Ahmadu Bello University Zaria Nigeria
| | | | | |
Collapse
|
6
|
Wang X, Zhang R, Song C, Crump D. Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors. ENVIRONMENTAL RESEARCH 2020; 182:108982. [PMID: 31821984 DOI: 10.1016/j.envres.2019.108982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) have gained considerable interest from many environmental chemists and toxicologists due to their frequent detection in the environment and potential adverse effects on health. Nuclear hormone receptors (NHRs) were found to mediate many of their adverse effects. However, our knowledge regarding the direct binding and interaction between OPEs and NHRs is limited. In this study, Endocrine Disruptome, an online computational tool based on the technique of inverse docking, was used to calculate the binding affinity score of 25 individual OPEs with 12 different human NHRs. Results showed that 20% of potential binding interactions between the OPEs and NHRs had medium-to-high probabilities. The accuracy, sensitivity and specificity of the predictions were 78.8, 60.0 and 80.9%, respectively. OPEs with a benzene ring were more active than those without, among which, tri-o-tolyl phosphate and tri-m-tolyl phosphate displayed the highest activities, suggesting that they might pose the greatest potential risks for interference with endocrine functions. In addition, the antagonistic conformations of androgen receptor and estrogen receptor β were found to be the two most vulnerable NHR conformations. Our findings can further the understanding about the health risk(s) of OPEs.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agricultural and Rural affairs, Beijing, 100000, PR China.
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, K1A 0H3, Ottawa, Canada
| |
Collapse
|
7
|
Devillers J, Devillers H. Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:801-824. [PMID: 31565973 DOI: 10.1080/1062936x.2019.1665844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Human malaria is the most widespread mosquito-borne life-threatening disease worldwide. In the absence of effective vaccines, prevention and treatment of malaria only depend on prophylaxis and drug-based therapy either in monotherapy or in combination. Unfortunately, the number of available antimalarial drugs presenting different mechanisms of action is rather limited. In addition, the appearance of drug-resistance in the parasite strains impacts the efficacy of the treatments. As a result, there is a crucial need to find new drugs to circumvent resistance problems. In the quest to identify new antimalarial agents a huge number of plant-derived compounds (PDCs) have been investigated. Surprisingly in the in silico PDC screening programs, toxicity filters are either never used or so simple that their interest is limited. In this context, the goal of this study was to show how to take advantage of validated toxicity QSAR models for refining the selection of PDCs. From an original data set of 507 PDCs collected from the literature, the use of toxicity filters for endocrine disruption, developmental toxicity, and hepatotoxicity in conjunction with classical pharmacokinetic filters allowed us to obtain a list of 31 compounds of potential interest. The pros and cons of such a strategy have been discussed.
Collapse
Affiliation(s)
| | - H Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| |
Collapse
|
8
|
Devillers J, Devillers H, Bro E, Millot F. Expert judgment based multicriteria decision models to assess the risk of pesticides on reproduction failures of grey partridge. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:889-911. [PMID: 29206499 DOI: 10.1080/1062936x.2017.1402449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
A suite of models is proposed for estimating the risk of pesticides against the grey partridge (Perdix perdix) and their clutches. Radio-tracked data of females, description and location of the clutches, and data on the pesticide treatments during the laying periods of the partridges were used as basic information. Quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) modelling allowed us to characterize the pesticides by their 1-octanol/water partition coefficient (log P), vapour pressure, primary and ultimate biodegradation potential, acute toxicity (LD50) on P. perdix, and endocrine disruption potential. From these physicochemical and toxicological data, the system of integration of risk with interaction of scores (SIRIS) method was used to design scores of risk for pesticides, alone or in mixture. A program, written in R (version 3.1.1), called Simulation of Toxicity in Perdix perdix (SimToxPP), was designed for estimating the risk of substances, considered alone or in mixture, against the grey partridge during breeding. The software tool is flexible enough to simulate realistic in situ scenarios. Different examples of applications are shown. The advantages and limitations of the approach are briefly discussed.
Collapse
Affiliation(s)
| | - H Devillers
- b Micalis Institute, INRA, University Paris-Saclay , Jouy-en-Josas , France
| | - E Bro
- c Research Department , National Game and Wildlife Institute (ONCFS) , Auffargis , France
| | - F Millot
- c Research Department , National Game and Wildlife Institute (ONCFS) , Auffargis , France
| |
Collapse
|
9
|
Ruiz P, Sack A, Wampole M, Bobst S, Vracko M. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors. CHEMOSPHERE 2017; 178:99-109. [PMID: 28319747 PMCID: PMC8265162 DOI: 10.1016/j.chemosphere.2017.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 05/30/2023]
Abstract
Thousands of potential endocrine-disrupting chemicals present difficult regulatory challenges. Endocrine-disrupting chemicals can interfere with several nuclear hormone receptors associated with a variety of adverse health effects. The U.S. Environmental Protection Agency (U.S. EPA) has released its reviews of Tier 1 screening assay results for a set of pesticides in the Endocrine Disruptor Screening Program (EDSP), and recently, the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) data. In this study, the predictive ability of QSAR and docking approaches is evaluated using these data sets. This study also presents a computational systems biology approach using carbaryl (1-naphthyl methylcarbamate) as a case study. For estrogen receptor and androgen receptor binding predictions, two commercial and two open source QSAR tools were used, as was the publicly available docking tool Endocrine Disruptome. For estrogen receptor binding predictions, the ADMET Predictor, VEGA, and OCHEM models (specificity: 0.88, 0.88, and 0.86, and accuracy: 0.81, 0.84, and 0.88, respectively) were each more reliable than the MetaDrug™ model (specificity 0.81 and accuracy 0.77). For androgen receptor binding predictions, the Endocrine Disruptome and ADMET Predictor models (specificity: 0.94 and 0.8, and accuracy: 0.78 and 0.71, respectively) were more reliable than the MetaDrug™ model (specificity 0.33 and accuracy 0.4). A consensus approach is proposed that reaches general agreement among the models (specificity 0.94 and accuracy 0.89). This study integrates QSAR, docking, and systems biology approaches as a virtual screening tool for use in risk assessment. As such, this systems biology pathways and network analysis approach provides a means to more critically assess the potential effects of endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- P Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
| | - A Sack
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - M Wampole
- Thomson Reuters, Philadelphia, PA, USA
| | - S Bobst
- ToxSci Advisors, Houston, TX, USA
| | - M Vracko
- Kemijski Inštitut/National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Pharmacoinformatics study of Piperolactam A from Piper betle root as new lead for non steroidal anti fertility drug development. Comput Biol Chem 2017; 67:213-224. [DOI: 10.1016/j.compbiolchem.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 06/19/2016] [Accepted: 01/09/2017] [Indexed: 11/22/2022]
|
11
|
Ahmad MI, Usman A, Ahmad M. Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients. CHEMOSPHERE 2017; 173:395-403. [PMID: 28129617 DOI: 10.1016/j.chemosphere.2017.01.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/10/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Several environmental pollutants, including herbicides, act as endocrine disrupting chemicals (EDCs). They can cause cancer, diabetes, obesity, metabolic diseases and developmental problems. Present study was conducted to screen 608 herbicides for evaluating their endocrine disrupting potential. The screening was carried out with the help of endocrine disruptome docking program, http://endocrinedisruptome.ki.si (Kolsek et al., 2013). This program screens the binding affinity of test ligands to 12 major nuclear receptors. As high as 252 compounds were capable of binding to at least three receptors wherein 10 of them showed affinity with at-least six receptors based on this approach. The latter were ranked as potent EDCs. Majority of the screened herbicides were acting as antagonists of human androgen receptor (hAR). A homology modeling approach was used to construct the three dimensional structure of hAR to understand their binding mechanism. Docking results reveal that the most potent antiandrogenic herbicides would bind to hydrophobic cavity of modeled hAR and may lead to testicular dysgenesis syndrome (TDS) on fetal exposure. However, on binding to T877 mutant AR they seem to act as agonists in castration-resistant prostate cancer (CRPC) patients.
Collapse
Affiliation(s)
- Md Irshad Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Afia Usman
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
12
|
Wang X, Zhang X, Xia P, Zhang J, Wang Y, Zhang R, Giesy JP, Shi W, Yu H. A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:609-616. [PMID: 27810749 DOI: 10.1016/j.scitotenv.2016.10.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Some pollutants can bind to nuclear receptors (NRs) and modulate their activities. Predicting interactions of NRs with chemicals is required by various jurisdictions because these molecular initiating events can result in adverse, apical outcomes, such as survival, growth or reproduction. The goal of this study was to develop a high-throughput, computational method to predict potential agonists of NRs, especially for contaminants in the environment or to which people or wildlife are expected to be exposed, including both persistent and pseudo-persistent chemicals. A 3D-structure database containing 39 human NRs was developed. The database was then combined with AutoDock Vina to develop a System for Predicting Potential Effective Nuclear Receptors (SPEN), based on inverse docking of chemicals. The SPEN was further validated and evaluated by experimental results for a subset of 10 chemicals. Finally, to assess the robustness of SPEN, its ability to predict potentials of 40 chemicals to bind to some of the most studied receptors was evaluated. SPEN is rapid, cost effective and powerful for predicting binding of chemicals to NRs. SPEN was determined to be useful for screening chemicals so that pollutants in the environment can be prioritized for regulators or when considering alternative compounds to replace known or suspected contaminants with poor environmental profiles.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Junjiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Rui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; School of Resources and Environment, University of Jinan, Jinan, Shandong 250022, PR China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan SK S7N5A2, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR 999077, PR China; Zoology Dept. and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| |
Collapse
|
13
|
Yildirim A, Zhang J, Manzetti S, van der Spoel D. Binding of Pollutants to Biomolecules: A Simulation Study. Chem Res Toxicol 2016; 29:1679-1688. [PMID: 27603112 DOI: 10.1021/acs.chemrestox.6b00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of cases around the world have been reported where animals were found dead or dying with symptoms resembling a thiamine (vitamin B) deficiency, and for some of these, a link to pollutants has been suggested. Here, we investigate whether biomolecules involved in thiamin binding and transport could be blocked by a range of different pollutants. We used in silico docking of five compound classes (25 compounds in total) to each of five targets (prion protein, ECF-type ABC transporter, thi-box riboswitch receptor, thiamin pyrophosphokinase, and YKoF protein) and subsequently performed molecular dynamics (MD) simulations to assess the stability of the complexes. The compound classes were thiamin analogues (control), pesticides, veterinary medicines, polychlorinated biphenyls, and dioxins, all of which are prevalent in the environment to some extent. A few anthropogenic compounds were found to bind the ECF-type ABC transporter, but none binds stably to prion protein. For the riboswitch, most compounds remained in their binding pockets during 50 ns of MD simulation, indicating that RNA provides a promiscuous binding site. In both YKoF and thiamin pyrophosphokinase (TPK), most compounds remain tightly bound. However, TPK biomolecules undergo pollutant-induced conformational changes. Although most compounds are found to bind to some of these targets, a larger data set is needed along with more quantitative methods like free energy perturbation calculations before firm conclusions can be drawn. This study is in part a test bed for large-scale quantitative computational screening of interactions between biological entities and pollutant molecules.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Physics, Faculty of Science and Art, Siirt University , 56100 Siirt, Turkey.,Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - Jin Zhang
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.,Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Sergio Manzetti
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
14
|
Yang X, Liu H, Liu J, Li F, Li X, Shi L, Chen J. Rational Selection of the 3D Structure of Biomacromolecules for Molecular Docking Studies on the Mechanism of Endocrine Disruptor Action. Chem Res Toxicol 2016; 29:1565-70. [PMID: 27556396 DOI: 10.1021/acs.chemrestox.6b00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular modeling has become an essential tool in predicting and simulating endocrine disrupting effects of chemicals. A key prerequisite for successful application of molecular modeling lies in the correctness of 3D structure for biomacromolecules to be simulated. To date, there are several databases that can provide the experimentally-determined 3D structures. However, commonly, there are many challenges or disadvantageous factors, e.g., (a) lots of 3D structures for a given biomacromolecular target in the protein database; (b) the quality variability for those structures; (c) belonging to different species; (d) mutant amino acid residue in key positions, and so on. Once an inappropriate 3D structure of a target biomacromolecule was selected in molecular modeling, the accuracy and scientific nature of the modeling results could be inevitably affected. In this article, based on literature survey and an analysis of the 3D structure characterization of biomacromolecular targets belonging to the endocrine system in protein databases, six principles were proposed to guide the selection of the appropriate 3D structure of biomacromolecules. The principles include considering the species diversity, the mechanism of action, whether there are mutant amino acid residues, whether the number of protein chains is correct, the degree of structural similarity between the ligand in 3D structure and the target compounds, and other factors, e.g., the experimental pH conditions of the structure determined process and resolution.
Collapse
Affiliation(s)
- Xianhai Yang
- Nanjing Institute of Environmental Science , Ministry of Environmental Protection, Nanjing 210042, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Jining Liu
- Nanjing Institute of Environmental Science , Ministry of Environmental Protection, Nanjing 210042, China
| | - Fei Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Lili Shi
- Nanjing Institute of Environmental Science , Ministry of Environmental Protection, Nanjing 210042, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
15
|
Kržan M, Vianello R, Maršavelski A, Repič M, Zakšek M, Kotnik K, Fijan E, Mavri J. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands. PLoS One 2016; 11:e0154002. [PMID: 27159606 PMCID: PMC4861267 DOI: 10.1371/journal.pone.0154002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure.
Collapse
Affiliation(s)
- Mojca Kržan
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Maršavelski
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Zagreb, Croatia
| | - Matej Repič
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Maja Zakšek
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Kotnik
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Estera Fijan
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Mavri
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
16
|
Devillers J, Bro E, Millot F. Prediction of the endocrine disruption profile of pesticides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:831-852. [PMID: 26548639 DOI: 10.1080/1062936x.2015.1104809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Numerous manmade chemicals released into the environment can interfere with normal, hormonally regulated biological processes to adversely affect the development and reproductive functions of living species. Various in vivo and in vitro tests have been designed for detecting endocrine disruptors, but the number of chemicals to test is so high that to save time and money, (quantitative) structure-activity relationship ((Q)SAR) models are increasingly used as a surrogate for these laboratory assays. However, most of them focus only on a specific target (e.g. estrogenic or androgenic receptor) while, to be more efficient, endocrine disruption modelling should preferentially consider profiles of activities to better gauge this complex phenomenon. In this context, an attempt was made to evaluate the endocrine disruption profile of 220 structurally diverse pesticides using the Endocrine Disruptome simulation (EDS) tool, which simultaneously predicts the probability of binding of chemicals on 12 nuclear receptors. In a first step, the EDS web-based system was successfully applied to 16 pharmaceutical compounds known to target at least one of the studied receptors. About 13% of the studied pesticides were estimated to be potential disruptors of the endocrine system due to their high predicted affinity for at least one receptor. In contrast, about 55% of them were unlikely to be endocrine disruptors. The simulation results are discussed and some comments on the use of the EDS tool are made.
Collapse
Affiliation(s)
| | - E Bro
- b Research Department , National Game and Wildlife Institute (ONCFS) , Le Perray en Yvelines , France
| | - F Millot
- b Research Department , National Game and Wildlife Institute (ONCFS) , Le Perray en Yvelines , France
| |
Collapse
|