1
|
Ni M, Pan Y, Gong J, Chen Z, Li D, Huang Y, Li L, Ding Y, Bi Z. Glycogen-accumulating organisms promote phosphate recovery from wastewater by pilot-scale biofilm sequencing batch reactor: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 418:131910. [PMID: 39615760 DOI: 10.1016/j.biortech.2024.131910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
A high phosphate (P) recovery concentration was achieved in pilot-scale biofilm sequencing batch reactor (BSBR) with a low carbon source (C) cost. Especially, a high-abundance glycogen-accumulating organisms (GAOs) (13.93-31.72%) was detected that was accompanied by a high P recovery concentration of BSBR. High-abundance GAOs obtain additional C through various C compensation pathways (split tricarboxylic acid cycle (TCA cycle), glyoxylate shunt and gluconeogenesis), thus reducing the need to compete with polyphosphate-accumulating organisms (PAOs) for C and weakening the adverse effects on P recovery by PAO cells. Under the action of N-acyl homoserine lactones (AHLs)-mediated quorum sensing (QS), GAOs promoted the secretion of a large amount of extracellular polymeric substances (EPS), which helped to realize the P recovery of EPS-dominated biofilms (68.02%-96.89%). This study provides a low-carbon technology for the recovery of high concentration P from municipal wastewater, and improves the ecological theory of P recovery in collaboration with GAOs and PAOs.
Collapse
Affiliation(s)
- Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiahui Gong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiqiang Chen
- Harbin Institute of Technology, Harbin 150006, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanyan Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Wang X, Zhang J, Li L, Zhu Y, Zhang Y, Ni M, Ding Y, Huang Y, Pan Y. Formation mechanism of high biofilm phosphorus storage capacity and its effect on phosphorus uptake-release and carbon source consumption. BIORESOURCE TECHNOLOGY 2024; 412:131363. [PMID: 39197659 DOI: 10.1016/j.biortech.2024.131363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Phosphorus recovery from wastewater is an effective method to alleviate the shortage of phosphorus resources. The biofilm phosphorus recovery process can realize simultaneous removal and enrichment of phosphorus in wastewater. In this study, a sequencing batch biofilm reactor was constructed to study the rapid phosphorus release and slow phosphorus release stages in the phosphorus recovery cycle. The relationship between high biofilm phosphorus storage capacity (Pbiofilm), phosphorus recovery solution concentration, phosphorus uptake-release behavior and carbon source consumption were explored. The increase in phosphorus recovery solution concentration promotes the elevation of Pbiofilm, which, conversely promotes phosphorus release in the next recovery cycle. In addition, the distinct phosphorus uptake-release characteristics of extracellular polymeric substances and cells were illustrated. This study provides a theoretical foundation to elevate the phosphorus recovery efficiency and reduce carbon source consumption in biofilm phosphorus recovery process.
Collapse
Affiliation(s)
- Xiaoya Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Zhang
- Suzhou Drainage Company Limited, Suzhou 215009, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Ye Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanyan Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Zheng C, Zhang J, Ni M, Pan Y. Phosphate recovery from urban sewage by the biofilm sequencing batch reactor process: Key factors in biofilm formation and related mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118985. [PMID: 38663668 DOI: 10.1016/j.envres.2024.118985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The biofilm sequencing batch reactor (BSBR) technique has been deployed in the laboratory to enrich phosphorus from simulated wastewater, but it is still not clear what its performance will be when real world sewage is used. In this work, the effluent from the multi-stage anoxic-oxic (AO) activated sludge process at a sewage plant was used as the feed water for a BSBR pilot system, which had three reactors operating at different levels of dissolved oxygen (DO). The phosphorus adsorption and release, the biofilm growth, and the extracellular polymeric substances (EPS) components and contents were examined. The microbial communities and the signaling molecules N-acyl-l-homoserine lactones (AHLs) were also analyzed. Gratifyingly, the BSBR process successfully processed the treated sewage, and the biofilm developed phosphorus accumulation capability within 40 days. After entering stable operation, the system concentrated phosphate from 2.59 ± 0.77 mg/L in the influent to as much as 81.64 mg/L in the recovery liquid. Sludge discharge had profound impacts on all aspects of BSBR, and it was carried out successfully when the phosphorus absorption capacity of the biofilm alone was comparable to that of the reactor containing the activated sludge. Shortly after the sludge discharge, the phosphate concentration of the recovery liquid surged from 50 to 140 mg/L, the biofilm thickness grew from 20.56 to 67.32 μm, and the diversity of the microbial population plunged. Sludge discharge stimulated Candidatus competibacter to produce a large amount of AHLs, which was key in culturing the biofilm. Among the AHLs, both C10-HSL and 3OC12-HSL were significantly positively correlated with EPS and the abundance of Candidatus competibacter. The current results demonstrated BSBR as a viable option to enrich phosphorus from real world sewage with low phosphorus content and fluctuating chemistry. The mechanistic explorations also provided theoretical guidance for cultivating phosphorus-accumulating biofilms.
Collapse
Affiliation(s)
- Chao Zheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jun Zhang
- Suzhou Drainage Company Limited, Suzhou, 215009, China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Zhang H, Zhang SS, Zhang W, Ma WC, Pan Y, Chen L, Zhu L, Li YP, Li JR. Clarification of the phosphorus release mechanism for recovering phosphorus from biofilm sludge in alternating aerobic/anaerobic biofilm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166811. [PMID: 37673249 DOI: 10.1016/j.scitotenv.2023.166811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/16/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
A novel wastewater treatment plant process was constructed to overcome the challenge of simultaneous nitrate removal and phosphorus (P) recovery. The results revealed that the P and nitrate removal efficiency rose from 39.0 % and 48.4 % to 92.8 % and 93.6 % after 136 days of operation, and the total P content in the biofilm (TPbiofilm) rose from 15.8 mg/g SS to 57.8 mg/g SS. Moreover, the increase of TPbiofilm changed the metabolic mode of denitrifying polyphosphate accumulating organisms (DPAOs), increasing the P concentration of the enriched stream to 172.5 mg/L. Furthermore, the acid/alkaline fermentation led to the rupture of the cell membrane, which released poly-phosphate and ortho-phosphate of cell/EPS in DPAOs and released metal‑phosphorus (CaP and MgP). In addition, high-throughput sequencing analysis demonstrated that the relative abundance of DPAOs involved in P storage increased, wherein the abundance of Acinetobacter and Saprospiraceae rose from 8.0 % and 4.1 % to 16.1 % and 14.0 %. What's more, the highest P recovery efficiency (98.3 ± 1.1 %) could be obtained at optimal conditions for struvite precipitation (pH = 7.56 and P: N: Mg = 1.87:3.66:1) through the response surface method (RSM) simulation, and the precipitates test analysis indicated that P recovery from biofilm sludge was potentially operable. This research was of great essentiality for exploring the recovery of P from biofilm sludge.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuang-Shuang Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wu-Cheng Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jing-Ru Li
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
5
|
Ni M, Pan Y, Li D, Huang Y, Chen Z, Li L, Bi Z, Wu R, Song Z. Metagenomics, metatranscriptomics, and proteomics reveal the metabolic mechanism of biofilm sequencing batch reactor with higher phosphate enrichment capacity under low phosphorus load. ENVIRONMENTAL RESEARCH 2023; 238:117237. [PMID: 37793587 DOI: 10.1016/j.envres.2023.117237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The biofilm sequencing batch reactor (BSBR) process has higher phosphate recovery efficiency and enrichment multiple when the phosphorus load is lower, but the mechanism of phosphate enrichment at low phosphorus load remains unclear. In this study, we operated two BSBR operating under low and high phosphorus load (0.012 and 0.032 kg/(m3·d)) respectively, and used metagenomic, metatranscriptomic, and proteomics methods to analyze the community structure of the phosphorus accumulating organisms (PAOs) in the biofilm, the transcription and protein expression of key functional genes and enzymes, and the metabolism of intracellular polymers. Compared with at high phosphorus load, the BSBR at low phosphorus load have different PAOs and fewer types of PAOs, but in both cases the PAOs must have the PHA, PPX, Pst, and acs genes to become dominant. Some key differences in the metabolism of PAOs from the BSBR with different phosphorus load can be identified as follows. When the phosphorus load is low, the adenosine triphosphoric acid (ATP) and NAD(P)H in the anaerobic stage come from the TCA cycle and the second half of the EMP pathway. The key genes that are upregulated include GAPDH, PGK, ENO, ppdk in the EMP pathway, actP in acetate metabolism, phnB in polyhydroxybutyrate (PHB) synthesis, and aceA, mdh, sdhA, and IDH1 in the TCA cycle. In the meantime, the ccr gene in the PHV pathway is inhibited. As a result, the metabolism of the PAOs features low glycogen with high PHB, Pupt, Prel, and low PHV. That is, more ATP and NAD(P)H flow to phosphorus enrichment metabolism, thus allowing the highly efficient enrichment of phosphorus from low concentration phosphate thanks to the higher abundance of PAOs. The current results provide theoretical support and a new technical option for the enrichment and recovery of low concentrations of phosphate from wastewater by the BSBR process.
Collapse
Affiliation(s)
- Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhiqiang Chen
- Harbin Institute of Technology, Harbin, 150006, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ruijing Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | | |
Collapse
|
6
|
Mu Y, Wan L, Liang Z, Yang D, Han H, Yi J, Dai X. Enhanced biological phosphorus removal by high concentration powder carrier bio-fluidized bed (HPB): Phosphorus distribution, cyclone separation, and metagenomics. CHEMOSPHERE 2023; 337:139353. [PMID: 37414297 DOI: 10.1016/j.chemosphere.2023.139353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
This study provides a comparative investigation of phosphorus removal between anaerobic-anoxic-oxic (AAO) and high-concentration powder carrier bio-fluidized bed (HPB) in the same full-scale wastewater treatment plant. The results showed that the total phosphorus removal of HPB was 71.45%-96.71%. Compared with AAO, the total phosphorus removal of HPB can be increased by a maximum of 15.73%. The mechanisms of enhanced phosphorus removal by HPB include the followings. Biological phosphorus removal was significant. The anaerobic phosphorus release capacity of HPB was enhanced and polyphosphate (Poly-P) in the excess sludge of HPB was 1.5 times higher than that of AAO. The relative abundance of Candidatus Accumulibacter was 5 times higher than that of AAO, and oxidative phosphorylation and butanoate metabolism were enhanced. The analysis of phosphorus distribution showed that cyclone separation increased the chemical phosphorus precipitation (Chem-P) in the excess sludge by 16.96% to avoid accumulation in the biochemical tank. The phosphorus adsorbed by extracellular polymeric substance (EPS) in the recycled sludge was stripped, and the EPS bound-P in the excess sludge increased by 1.5 times. This study demonstrated the feasibility of HPB to improve the phosphorus removal efficiency for domestic wastewater.
Collapse
Affiliation(s)
- Yanyu Mu
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Li Wan
- Hunan Wufang Environmental Science and Technology Research Institute Co. Ltd., Changsha, Hunan, China
| | - Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Donghai Yang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Dong K, Qiu Y, Wang X, Yu D, Yu Z, Feng J, Wang J, Gu R, Zhao J. Towards low carbon demand and highly efficient nutrient removal: Establishing denitrifying phosphorus removal in a biofilm-based system. BIORESOURCE TECHNOLOGY 2023; 372:128658. [PMID: 36690218 DOI: 10.1016/j.biortech.2023.128658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The combined denitrifying phosphorus removal (DPR) and Anammox process is expected to achieve advanced nutrient removal with low carbon consumption. However, exchanging ammonia/nitrate between them is one limitation. This study investigated the feasibility of conducting DPR in a biofilm reactor to solve that problem. After 46-day anaerobic/aerobic operation, high phosphorus removal efficiency (PRE, 83.15 %) was obtained in the activated sludge (AS) and biofilm co-existed system, in which the AS performed better. Phosphate-accumulating organisms might quickly adapt to the anoxic introduced nitrate, but the following aerobic stage ensured a low effluent orthophosphate (<1.03 mg/L). Because of waste sludge discharging and AS transforming to biofilm, the suspended solids dropped below 60 mg/L on Day 100, resulting in PRE decline (17.17 %) and effluent orthophosphate rise (4.23 mg/L). Metagenomes analysis revealed that Pseudomonas and Thiothrix had genes for denitrification and encoding Pit phosphate transporter, and Candidatus_Competibacter was necessary for biofilm formation.
Collapse
Affiliation(s)
- Kaiyue Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Efficient Intelligent Sewage Treatment Technology Innovation Center of Shandong Province, Linyi 276000, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Juan Feng
- Science and Technology Department, Qingdao University, Qingdao 266071, China
| | - Jimiao Wang
- Qingdao Water Group Co. Ltd., Qingdao 266071, China
| | - Ruihuan Gu
- Qingdao Water Group Co. Ltd., Qingdao 266071, China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Efficient Intelligent Sewage Treatment Technology Innovation Center of Shandong Province, Linyi 276000, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
8
|
Zhang H, Zhang SS, Zhang W, Zhu L, Li YP, Pan Y. Biomineralization and AHLs-guided quorum sensing enhanced phosphorus recovery in the alternating aerobic/anaerobic biofilm system under metal ion stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116583. [PMID: 36308955 DOI: 10.1016/j.jenvman.2022.116583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The alternating aerobic/anaerobic biofilm system had been applied for phosphorus (P) enrichment and recovery because of the advantage of low energy consumption and high efficiency. The metal ions and N-acyl-L-homoserine lactones (AHLs) in system were studied to better clarify the mechanism of P uptake/release under metal ion stress. The results indicated that the increase of metal ions stimulated the release of AHLs, and AHLs-guided quorum sensing (QS) enhanced P uptake. Moreover, biomineralization could stimulate the increase of P content in biofilm (Pbiofilm). Meanwhile, some ortho-p was converted to short-chain poly-p in extracellular polymer substance (EPS), and others were transferred into cell through EPS to synthesize poly-p. With the Pbiofilm increased, more P could be absorbed/released due to the shift in the metabolic model of polyphosphate accumulating organisms (PAOs). The release of AHLs between microorganisms was also inhibited when PAOs reached the state of P saturation (75.6 ± 2.5 mg/g SS), which meant that the effect of signaling function would tend to stabilize, and the 169.2 ± 2.6 mg/L P concentration in the enriched solution was obtained due to the P release was inhibited. Moreover, P was rapidly transferred to the new enriched solution after the P was recovered, and PAOs restored its capability of P uptake/release. In addition, 31P-NMR analysis demonstrated that EPS played a major role in PAOs compared to cell, and inorganic phosphorus (IP) played an essential role in the uptake/release of P compared to organic phosphorus (OP). Furthermore, the microbiological analysis showed that Candidatus Accumulibacter was positively correlated with AHLs (P < 0.05). This study provided essential support for clarifying the P metabolism mechanism of PAOs.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | | | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Scienceand Technology, Suzhou, 215009, China
| |
Collapse
|
9
|
Shukla R, Ahammad SZ. Performance evaluation and microbial community structure of a modified trickling filter and conventional activated sludge process in treating urban sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158331. [PMID: 36041611 DOI: 10.1016/j.scitotenv.2022.158331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study compares the performance and microbial composition of a conventional activated sludge process (ASP) with a modified trickling filter (MTF) for urban sewage treatment. MTF (2 h HRT with effluent recycling) and ASP (8 h HRT) showed >60 % removal efficiency for COD, NH3-N and PO43--P. MTF outperformed ASP in denitrification and 5 mg/L of NO3--N was detected in the effluent of MTF. The widespread distribution of nitrogen removal functional genes (amoA, nirK, nirS, napA, narG and nosZ) in MTF indicates simultaneous nitrification and denitrification (SND) as a key process controlling nitrogen removal. In addition, Miseq sequencing was used to examine the microbial community composition in MTF and ASP. The sequencing result revealed that Proteobacteria, Planctomycetes, Chloroflexi and Actinobacteriota were the dominant phyla in both MTF and ASP. Moreover, the co-occurrence of various nitrifiers, denitrifiers, aerobic denitrifiers, and ANAMMOX bacteria in MTF suggested their role in nitrogen removal.
Collapse
Affiliation(s)
- Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Ni M, Chen Y, Pan Y, Huang Y, Li DP, Li L, Huang B, Song Z. Study on community structure and metabolic mechanism of dominant polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in suspended biofilm based on phosphate recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152678. [PMID: 34973331 DOI: 10.1016/j.scitotenv.2021.152678] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/16/2023]
Abstract
Biofilm sequencing batch reactor (BSBR) can achieve efficient phosphate (P) removal and enrichment, but its process performance and metabolic mechanisms for P removal and enrichment of municipal wastewater remain largely unclear. In the present study, we assessed the P removal and enrichment of municipal wastewater at influent P concentrations of 2.5 mg/L and 10 mg/L. The efficiency of P removal and enzyme activity in polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) were compared, and the growth and metabolic characteristics of dominant PAOs and GAOs at different influent P concentrations were studied with the macro-sequencing technology. The results showed that the P recovery efficiencies were 70.03% and 76.19% when the influent P concentration was 2.5 mg/L and 10 mg/L in BSBR, respectively, and the maximum P concentration of recovery liquid was 81.29 mg/L and 173.12 mg/L, respectively. There were no phosphate kinase (PPK) and phosphate hydrolase (PPX) in extracellular polymeric substances (EPS). The dominant PAOs were Candidatus_Contendobacter, Dechloromonas, and Flavobacterium, and the dominant GAO was Candidatus_Competibacter. The abundance of Candidatus_Contendobacter was the highest with the most potential contribution to P removal. PAOs had competitive advantages in carbon (C) source uptake, glycogen metabolism, P metabolism, and adenosine triphosphate (ATP) metabolism. HMP was unique to PAOs, EMP had the highest abundance in glycogen metabolism, and ED was contained in PAOs of BSBR. These results indicated that BSBR provided sufficient reducing power and ATP for PAOs through different glycogen decomposition pathways to promote P uptake and obtained competitive advantages in P metabolism, C source uptake, and ATP utilization to achieve efficient P removal and enrichment. Collectively, our current findings provided valuable insights into the P removal and enrichment mechanism of BSBR in municipal sewage.
Collapse
Affiliation(s)
- Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yue Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China.
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Da-Peng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Bo Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | | |
Collapse
|
11
|
Zhang H, Zhang SS, Zhu L, Li YP, Chen L. Phosphorus recovery in the alternating aerobic/anaerobic biofilm system: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152297. [PMID: 34896486 DOI: 10.1016/j.scitotenv.2021.152297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
To balance the high phosphorus concentration in recirculated solution and the stability of biofilm system, this study explored the performance and mechanism of phosphorus uptake/release for recovering phosphorus from sewage when the phosphorus content in biofilm (Pbiofilm) changed. The results showed that the maximum phosphorus concentration in the concentrated solution reached 171.2 ± 2.5 mg·L-1 in harvest 1st-5th stages. Polyphosphate accumulating organisms (PAOs) performed a metabolic shift from glycogen accumulation metabolism (GAM) to polyphosphate accumulation metabolism (PAM) when Pbiofilm increased at each phosphorus enrichment stage, and more phosphorus was absorbed/released by PAOs. Nevertheless, the release of poly-phosphate from PAOs was inhibited after phosphorus concentration stabilized, and PAOs were unable to absorb phosphorus from wastewater as it reached the phosphorus saturation stage. To maintain the stability of the system, phosphorus had to be harvested so that the saturated phosphorus in PAOs was easily released in a new recirculated solution, resulting in adequate storage space for PAOs to absorb phosphorus. Meanwhile, the 31P NMR analysis demonstrated that phosphorus was stored in EPS and cell of PAOs, whereas EPS played a significant role than cell at the anaerobic phase. Particularly, ortho-phosphate was the major component of phosphorus release by EPS and poly-phosphate was the major part of phosphorus release by cell. Furthermore, the change of Pbiofilm had no impact on biofilm characteristics and microbial communities, whereas some PAOs would be enriched, and others that were not suitable for this process would be inhibited with repeated cycles of alternating aerobic/anaerobic operation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | | | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
12
|
Yang W, Shan J, Pan Y, Bi Z, Huang Y, Zhang H, Ni M. A new strategy for obtaining highly concentrated phosphorus recovery solution in biofilm phosphorus recovery process. J Environ Sci (China) 2022; 112:366-375. [PMID: 34955219 DOI: 10.1016/j.jes.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/14/2023]
Abstract
Recovery of phosphorus (P) from wastewater is of great significance for alleviating the shortage of P resources. At present, the P recovery process is faced with the problem of excessive organic carbon consumption when obtaining a P-concentrated recovery solution. This study proposed a new strategy to obtain a more highly concentrated P recovery solution with minimal carbon consumption by strengthening the P storage capacity of the biofilm. A biofilm sequencing batch reactor (BSBR) process was modified to treat synthetic wastewater. The effect of the dissolved oxygen (DO) concentration on the P storage capacity of the biofilm was investigated at DO concentrations of DO 3.5 mg/L (PL) and DO 6.5 mg/L (PH). The results showed a maximum P storage of 101.2 and 149.6 mg-P/g-mixed liquid suspended solids under the two conditions. Strengthening the P storage capacity of the biofilm resulted in a net increase in the P recovery rate, which was as high as 66.96% in a harvesting cycle, and total soluble P>220 mg/L in the P recovery solution was successfully achieved. Meanwhile, the carbon cost of P recovery in the BSBR was reduced to 41.57 g-chemical oxygen demand/g-P, and the carbon utilization efficiency was enhanced. To highlight the new strategy, the P recovery performance of the BSBR was given and the relationship between P content and anaerobic P release was discussed. In addition, the changes in the microbial communities under PL and PH conditions were analyzed.
Collapse
Affiliation(s)
- Wanjing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
13
|
Wongkiew S, Polprasert C, Koottatep T, Limpiyakorn T, Surendra KC, Khanal SK. Chicken manure-based bioponics: Effects of acetic acid supplementation on nitrogen and phosphorus recoveries and microbial communities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:264-274. [PMID: 34814072 DOI: 10.1016/j.wasman.2021.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Bioponics has the potential to recover nutrients from organic waste streams, such as chicken manure and digestate with high volatile fatty acid (VFA) contents through crop production. Acetic acid, a dominant VFA, was supplemented weekly (0, 500, 1000, and 1500 mg/L) in a chicken manure-based bioponic system, and its effect on the performance of bioponics (e.g., plant yield and nitrogen and phosphorus availabilities) was examined. Microbial communities were analyzed using 16S rRNA gene sequencing, and the functional gene abundances were predicted using PICRUSt. Although acetic acid negatively affected plant yield, no significant difference (p > 0.05) was noted in the average nitrogen or phosphorus concentration. In terms of nutrient recovery, the bioponic systems still functioned well, although higher concentrations of acetic acid decreased plant yield and altered the bacterial communities in plant roots and chicken manure sediments. These data suggest that an acetic acid concentration of < 500 mg/L or a longer loading interval is recommended for the effective operation of chicken manure and digestate-based bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
14
|
Ni M, Pan Y, Chen Y, Zhang X, Huang Y, Song Z. Effects of seasonal temperature variations on phosphorus removal, recovery, and key metabolic pathways in the suspended biofilm. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Effects of P/C ratios on the growth, phosphorus removal and phosphorus recovery of a novel strain of highly efficient PAO. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhang H, Bi Z, Pan Y, Huang Y, Li DP, Shan J. Enhanced phosphorus storage in suspended biofilm by increasing dissolved oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137876. [PMID: 32208257 DOI: 10.1016/j.scitotenv.2020.137876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
The phosphorus recovery efficiency in PAOs-biofilm system is so far limited to stimulating phosphorus release by adding concentrated organic carbon solution during the anaerobic stage. In present study, a PAOs-biofilm sequence batch reactor (BSBR) were operated to investigate whether increase of the phosphorus storage content via DO control can stimulate the release in the biofilm. During the operation of BSBR for 160 days, the phosphorus content in biofilm (Pbiofilm) was doubled via increasing dissolved oxygen (DO) from 4 to 6 mg/L. With the COD of 200 mg/L in the anaerobic phase, the phosphorus release was enhaced, resulting in an significant increase of phosphorus concentration from 94.85 to 179.5 mg/L in recirculated solution. Batch tests further clarified explicitly the increase of Pbiofilm stimulated a phosphorus release rate but this must be balanced since high Pbiofilm reduced the phosphorus removal capacity of the biofilm. With analysis of P31-NMR, Ortho-P and Poly-P were the main phosphorus species stored in biofilm. The microbial cell played a more important role than EPS in phosphorus storage. The dominant phylum in the master reactor was Proteobacteria with an abundance of 64.4%, in which the Rhodocyclaceae was the dominant PAOs with an abundance of 10.1%. The outcome of this study elucidated that increase of phosphorus storage via DO control which facilitated more efficient phosphorus release with much lower organic carbon source consumption during the enrichment of phosphorus. Meanwhile, we provided a new perspective for the recovery of phosphorus in future wastewater treatment plants.
Collapse
Affiliation(s)
- Hao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China.
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Da-Peng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
17
|
Tang VT, Pakshirajan K. Novel advanced porous concrete in constructed wetlands: preparation, characterization and application in urban storm runoff treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2374-2382. [PMID: 30699089 DOI: 10.2166/wst.2018.528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Common porous concrete templates (CPCT) and advanced porous concrete templates (APCT) were employed in this study to construct wetlands for their applications in pollutant removal from storm runoff. The planting ability of the concrete was investigated by growing Festuca elata plants in them. Strength of the porous concrete (7.21 ± 0.19 Mpa) decreased by 1.8 and 4.9% over a period of six and 12 months, respectively, due to its immersion in lake water. The height and weight of Festuca elata grass growth on the porous concrete were observed to be 12.6-16.9 mm and 63.4-95.4 mg, respectively, after a duration of one month. Advanced porous concrete template based constructed wetland (APCT-CW) showed better removal of chemical oxygen demand (COD) (49.6%), total suspended solids (TSS) (58.9), NH3-N (52.4%), total nitrogen (TN) (47.7%) and total phosphorus (TP) (45.5%) in storm water, when compared with the common porous concrete template based constructed wetland (CPCT-CW) with 20.6, 29.8, 30.1, 35.4 and 26.9%, respectively. The removal of Pb, Ni, Zn by the CPCT-CW unit were 28.9, 33.3 and 42.3%, respectively, whereas these were 51.1, 62.5 and 53.8%, respectively, with the APCT-CW unit. These results demonstrate that the advanced porous concrete template in constructed wetland could be employed successfully for the removal of pollutants from urban storm water runoff.
Collapse
Affiliation(s)
- Van Tai Tang
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam E-mail:
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
18
|
Tian Q, Zhuang L, Ong SK, Wang Q, Wang K, Xie X, Zhu Y, Li F. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal. WATER RESEARCH 2017; 119:267-275. [PMID: 28477542 DOI: 10.1016/j.watres.2017.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Under decreasing C/N (from 8.8 to 3.5) conditions, an alternating anaerobic/aerobic biofilter (AABF) was used to remove nitrogen and accumulate/recover phosphorus (P) from synthetic wastewater. The AABF was periodically (every 10 days) fed with an additional carbon source (10 L, chemical oxygen demand (COD) = 900 mg L-1 sodium acetate (NaAC) solution) in the anaerobic phase to induce the release of P sequestered in the biofilm. An increase in PHA storage in the biofilm was observed and characterized with TEM and a GC-MS method. The accumulation of P and removal of total nitrogen occurred primarily in the aerobic phase. As the NH4+-N loading rate increased from 0.095 to 0.238 kg m-3 d-1 at a total empty bed retention time (EBRT) of 4.6 h, the TN removal in AABF was reduced from 91.2% to 43.4%, while the P removal or recovery rate remained unaffected. The high-throughput community sequencing analysis indicated that the relative abundance of Candidatus Competibacter, Nitrospira and Arcobacter increased while the Accumulibacter phosphatis decreased with an increase of ammonium loading rate within a short operational period (30 days). A putative N and P removal pattern via simultaneous nitrification and PHA-based denitrification, as well as P accumulation in the biofilm was proposed. The research demonstrated that an efficient N removal and P recovery process, i.e., simultaneous nitrification and denitrification, P accumulation and carbon source-regulated P recovery can be achieved by the symbiotic functional groups in a single biofilm reactor.
Collapse
Affiliation(s)
- Qing Tian
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Linjie Zhuang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, IA, 50011, USA.
| | - Qi Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Kangwei Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Xuehui Xie
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Yanbin Zhu
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Fang Li
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| |
Collapse
|
19
|
Dai H, Lu X, Peng Y, Zou H, Shi J. An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. CHEMOSPHERE 2016; 165:211-220. [PMID: 27654224 DOI: 10.1016/j.chemosphere.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Homogeneous nucleation of hydroxyapatite (HAP) crystallization in high levels of supersaturation solution has a negative effect on phosphorus recovery efficiency because of the poor settleability of the generated HAP microcrystalline. In this study, a new high-performance approach for phosphorus recovery from anaerobic supernatant using three series-coupled air-agitated crystallization reactors was developed and characterized. During 30-day operation, the proposed process showed a high recovery efficiency (∼95.82%) and low microcrystalline ratio (∼3.11%). Particle size analysis showed that the microcrystalline size was successively increased (from 5.81 to 26.32 μm) with the sequence of series-coupled reactors, confirming the conjectural mechanism that a multistage-induced crystallization system provided an appropriate condition for the growth, aggregation, and precipitation of crystallized products. Furthermore, the new process showed a broad spectrum of handling ability for different concentrations of phosphorus-containing solution in the range of 5-350 mg L-1, and the obtained results of phosphorus conversion ratio and recovery efficiency were more than 92% and 80%, respectively. Overall, these results showed that the new process exhibited an excellent ability of efficient phosphorus recovery as well as wide application scope, and might be used as an effective approach for phosphorus removal and recovery from wastewater.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| | - Yonghong Peng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| | - Haiming Zou
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| | - Jing Shi
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| |
Collapse
|