1
|
Nagarjuna C, Ramakanth I. Solvent selective gelation of cetyltrimethylammonium bromide: structure, phase evolution and thermal characteristics. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231487. [PMID: 38577219 PMCID: PMC10987984 DOI: 10.1098/rsos.231487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
We report herein the gelation behaviour of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in a variety of solvent compositions. A turbid gel of CTAB in a binary solvent mixture at a critical composition was observed to be 1 : 3 v/v toluene : water. The molecular structure of the as-formed gel was investigated by X-ray diffraction and microscopic techniques, namely, optical and polarizing microscopy, scanning electron microscopy and small-angle X-ray scattering (SAXS). The phase evolution has been studied using UV-visible transmittance measurements and the thermal characteristics of the gel by differential scanning calorimetry measurements. SAXS studies, in conjunction with molecular modelling, revealed the gel to assemble as lamellae with high interdigitation of bilayer assembly of CTAB molecules with predominant non-covalent interactions, where the gel lamellae were inferred from the interplanar spacings. Rheological studies revealed the viscoelastic nature of the CTAB gels. The ability to form a gel has been evaluated in several polar solvents, such as methanol and chloroform, and non-polar solvents, such as toluene and carbon tetrachloride.
Collapse
Affiliation(s)
- Chapireddy Nagarjuna
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh522 241, India
| | - Illa Ramakanth
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh522 241, India
| |
Collapse
|
2
|
Wan H, Xu Q, Wu J, Lian C, Liu H, Zhang B, He J, Chen D, Lu J. SuFEx‐Enabled Elastic Polysulfates for Efficient Removal of Radioactive Iodomethane and Polar Aprotic Organics through Weak Intermolecular Forces. Angew Chem Int Ed Engl 2022; 61:e202208577. [DOI: 10.1002/anie.202208577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haibo Wan
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Jiacheng Wu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering East China University of Science and Technology China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering East China University of Science and Technology China
| | - Bing Zhang
- School of Renewable Energy North China Electric Power University China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
3
|
Yang Y, Wang L, Li X, Liu D, Dai S, Lu H. Carboxylate Group-Based Phase-Selective Organogelators with a pH-Triggered Recyclable Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9567-9574. [PMID: 35881913 DOI: 10.1021/acs.langmuir.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase-selective organogelators (PSOGs) have recently attracted more attention because of their advantages in handling oil spills and leaked organic solvents. However, it is difficult to separate and recover the organic phase and PSOGs from organic gels due to the strong interaction between them. Aiming to enhance the separation and recovery performance of the organic phase and PSOGs, we synthesized a series of pH-responsive PSOGs by using itaconic anhydride and fatty amines with carbon chain lengths of C12-C18. Here, PSOGs have an excellent gelation ability in that amounts of organic solvents and fuel oil can be solidified at a low concentration (<3 wt %). It is worth noting that these gels are stronger, which is more convenient for removal by a salvage operation. More importantly, compared with traditional organogelators, pH-responsive PSOGs can easily recover the organic phase and fuel oil with an adjustment of the pH without extraction or distillation. Because of the transformation between the hydrophilicity and hydrophobicity of PSOGs by pH stimulation, 83.15% PSOGs are recovered in three-cycle experiments. In addition, the recycled PSOGs can be used to realize the removal of the organic phase again. Herein, we find that pH-responsive PSOGs could be used as promising and sustainable materials for separating and recovering organic solvents/oils and PSOGs.
Collapse
Affiliation(s)
- Yang Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Li Wang
- College of Material Science and Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, P. R. China
| |
Collapse
|
4
|
Wan H, Xu Q, Wu J, Lian C, Liu H, Zhang B, He J, Chen D, Lu JM. SuFEx‐enabled Elastic Polysulfates for Efficient Removal of Radioactive Iodomethane and Polar Aprotic Organics through Weak Intermolecular Forces. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haibo Wan
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jiacheng Wu
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Cheng Lian
- East China University of Science and Technology School of Chemistry and Molecular Engineering School of Chemistry and Molecular Engineering CHINA
| | - Honglai Liu
- East China University of Science and Technology School of Chemistry and Molecular Engineering School of Chemistry and Molecular Engineering CHINA
| | - Bing Zhang
- North China Electric Power University School of Renewable Energy School of Renewable Energy CHINA
| | - Jinghui He
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
5
|
Zhang YP, Niu WY, Yang YS, Yuan YZ, Zhang HR. A chalcone organic gel for oil spill recovery and wastewater treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Rizzo C, Marullo S, Billeci F, D'Anna F. Catalysis in Supramolecular Systems: the Case of Gel Phases. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carla Rizzo
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Salvatore Marullo
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Floriana Billeci
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Francesca D'Anna
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
7
|
Hoang AT, Nguyen XP, Duong XQ, Huynh TT. Sorbent-based devices for the removal of spilled oil from water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28876-28910. [PMID: 33846913 DOI: 10.1007/s11356-021-13775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Always, oil spills do cause serious and dire consequences for the environment, nature, and society that it consumes much time and socio-economic resources to overcome such consequences. Oil spills, hence, posed a big challenge in searching the advanced technologies and devices to recover spilled oil rapidly and efficiently. Indeed, sorbents have been found to play an extremely critical role in the spilled-oil remediation processes. Recently, a large number of various advanced sorbents and sorbent-based oil-collecting devices/technologies have been developed to enhance the oil-recovery capacity. Therefore, it is necessary to have a comprehensive assessment of the application of sorbent-based oil-collecting devices/technologies in recovering spilled oil. Due to this reason, this paper aims to provide a comprehensive review of the advanced technologies of the combination of sorbents and oil-collecting devices in the oil cleanup strategies. Two main oil-collecting devices such as booms and skimmers that could conjunct with sorbents were critically evaluated on the basis of the applicability and technological features, indicating that the capacity of oil spill recovery could achieve 90%. Moreover, oil-storage and oil-collecting devices were also completely mentioned. Last but not least, technical directions, concerns over the application of sorbents in oil recovery, and existing challenges relating to storage, transport, and disposal of used sorbents were discussed in detail. In the future, the automatic process of spilled oil recovery with the conjunction between advanced devices and environmentally friendly high-efficiency sorbents should be further investigated to minimize the environmental impacts, reduce the cost, as well as maximize the collected oil spill.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam.
| | - Xuan Phuong Nguyen
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam.
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
| | - Thanh Tung Huynh
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Zhou Y, Zhang J, Wang Z, He F, Peng S, Li Y. A modified TA-APTES coating: Endowing porous membranes with uniform, durable superhydrophilicity and outstanding anti-crude oil-adhesion property via one-step process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Shin G, Khazi MI, Kim JM. Protonation-Triggered Supramolecular Gel from Macrocyclic Diacetylene: Gelation Behavior, Topochemical Polymerization, and Colorimetric Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13971-13980. [PMID: 33175557 DOI: 10.1021/acs.langmuir.0c02469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular gels originating from the hierarchical self-assembly of low molecular weight organic molecules is a strongly emerging field of advanced material research for the fabrication of soft functional materials. Herein, a novel supramolecular gel was fabricated through the protonation-triggered unidirectional self-assembly of pyridine-attached macrocyclic diacetylene (PyMCDA). Basic nitrogen of a pyridine ring with a strong affinity toward proton transforms the neutral PyMCDA into gelator in its protonated pyridinium salt form (PyMCDA-H+), which further evolves to nano-fibrillar networks to yield a supramolecular gel. Under the irradiation of UV light, the white color gel turned to a robust covalently cross-linked blue-phase PDA gel. Interestingly, polymeric PyMCPDA-H+ gel exhibits a naked-eye detectable reversible blue-red colorimetric response for alternating acid/base (H2SO4/NH4OH) and colorimetric sensitivity toward selected anions: CH3COO-, CN-, HCOO-, and CH3CH2COO-. It is with the hope that this work point toward the utility and versatility of macrocyclic PDAs for constructing chromogenic supramolecular gels for their possible use in sensing systems.
Collapse
Affiliation(s)
- Geon Shin
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Zhang T, Zhang C, Che X, Bai B, Li M, Wang H. Benzohydrazide Derivatives: Gelation and Application in Oil Spill Recovery. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9089-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Kumar BA, Nayak RR. Phenoxy‐Alkyl Maleates as Phase‐Selective Organogelators for Gelation of Edible Oils. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bijari A. Kumar
- Centre for Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyUppal RoadHyderabad500 007India
- Academy of Scientific and Innovative ResearchNew Delhi110 025India
| | - Rati R. Nayak
- Centre for Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyUppal RoadHyderabad500 007India
- Academy of Scientific and Innovative ResearchNew Delhi110 025India
| |
Collapse
|
12
|
Kocasoy V, Dedeoglu B, Demir-Ordu O, Aviyente V. Influence of odd-even effect and intermolecular interactions in 2D molecular layers of bisamide organogelators. RSC Adv 2018; 8:35195-35204. [PMID: 35547041 PMCID: PMC9088050 DOI: 10.1039/c8ra06224b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/01/2018] [Indexed: 11/23/2022] Open
Abstract
Organogelators have a wide range of use in everyday life including drug delivery and controlled release, surface coating and paper industry. In this study, a series of model bisamides have been analyzed as potential organogelators. These molecules are connected by odd and even numbered methylene units (n) in length ranging from 2 to 9. By constructing layers of those molecules along the growth direction we provide an insight into the self-assembly process. A complete systematic analysis of the computational results with B3LYP/6-311+G** suggests that the self-assembly of these potential organogelators is influenced by the odd–even effect, the relative direction of amide carbonyl groups, the bridging spacer chain length and the presence of a chiral alpha carbon. The aforementioned factors alter the strength of the intermolecular hydrogen bonds as well as the van der Waals interactions, which in turn may affect the self-assembly process of gelation and result in the formation of aggregates with different shapes. It is found that molecules with short central chains have an energetic preference for antiparallel arrangement over their parallel analogues as a result of stronger hydrogen bonding interactions. As the central chain elongates, the free energy difference between antiparallel and parallel structures decreases suggesting a compromise between hydrogen bonding and van der Waals interactions. The complete structural analysis suggests ribbon-like structures for achiral even-antiparallel and woven-like structures for odd-parallel systems, respectively. Upon creation of asymmetry on the alpha carbon, a twisted ribbon-like and a coiled coil-like structure are observed for even and odd systems, respectively. Our computational results are in accordance with the experimental results and provide an insight into the self-assembly of layers of bisamides. Our computational results rationalize the factors that affect the molecular self-assembly of bisamides and its role on gelation.![]()
Collapse
Affiliation(s)
- Volga Kocasoy
- Department of Chemistry, Bogazici University 34342 Bebek Istanbul Turkey
| | - Burcu Dedeoglu
- Department of Chemistry, Gebze Technical University 41400 Gebze Kocaeli Turkey
| | - Oznur Demir-Ordu
- Department of Chemistry, Abant Izzet Baysal University 14030 Golkoy Bolu Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Bogazici University 34342 Bebek Istanbul Turkey
| |
Collapse
|
13
|
Zhuan C, Li Y, Yuan X, Zhao J, Hou X. A sorbitol-based phase-selective organogelator for crude oil spills treatment. J Appl Polym Sci 2018. [DOI: 10.1002/app.47052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cailing Zhuan
- Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Yun Li
- Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
14
|
Christoff-Tempesta T, Lew AJ, Ortony JH. Beyond Covalent Crosslinks: Applications of Supramolecular Gels. Gels 2018; 4:E40. [PMID: 30674816 PMCID: PMC6209248 DOI: 10.3390/gels4020040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/25/2022] Open
Abstract
Traditionally, gels have been defined by their covalently cross-linked polymer networks. Supramolecular gels challenge this framework by relying on non-covalent interactions for self-organization into hierarchical structures. This class of materials offers a variety of novel and exciting potential applications. This review draws together recent advances in supramolecular gels with an emphasis on their proposed uses as optoelectronic, energy, biomedical, and biological materials. Additional special topics reviewed include environmental remediation, participation in synthesis procedures, and other industrial uses. The examples presented here demonstrate unique benefits of supramolecular gels, including tunability, processability, and self-healing capability, enabling a new approach to solve engineering challenges.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Andrew J Lew
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Raghava SV, Srivastava BK, Ramshad K, Antharjanam S, Varghese B, Muraleedharan KM. From helical supramolecular arrays to gel-forming networks: lattice restructuring and aggregation control in peptide-based sulfamides to integrate new functional attributes. SOFT MATTER 2018; 14:2357-2364. [PMID: 29498388 DOI: 10.1039/c7sm02495a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While supramolecular organisation is central to both crystallization and gelation, the latter is more complex considering its dynamic nature and multifactorial dependence. This makes the rational design of gelators an extremely difficult task. In this report, the assembly preference of a group of peptide-based sulfamides was modulated by making them part of an acid-amine two-component system to drive the tendency from crystallization to gelation. Here, the peptide core directed the assembly while the long-chain amines, introduced through salt-bridges, promoted layering and anisotropic development of primary aggregates. This proved to be very successful, leading to gelation of a number of solvents. Apart from this, it was possible to fine-tune their aggregation using an amphiphilic polymer like F-127 as an additive to get honey-comb-like 3D molecular architectures. These gels also proved to be excellent matrices for entrapping silver nanoparticles with superior emissive properties.
Collapse
Affiliation(s)
- Saripalli V Raghava
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Bhartendu K Srivastava
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Kalluruttimmal Ramshad
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | | | | | - Kannoth M Muraleedharan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|