1
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
2
|
Carminati G, Di Foggia M, Garagozzo L, Di Francesco A. Mushroom By-Products as a Source of Growth Stimulation and Biochemical Composition Added-Value of Pleurotus ostreatus, Cyclocybe cylindracea, and Lentinula edodes. Foods 2024; 13:2789. [PMID: 39272554 PMCID: PMC11395502 DOI: 10.3390/foods13172789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Spent mushroom substrates (SMSs) and mushroom basal bodies (MBBs) are significant by-products because of their nutrient content even after harvesting. This study aimed to evaluate the effect of these two by-products, derived from Agaricus bisporus (Ab) and Cyclocybe cylindracea (Cc) cultivation, as potential growth and biochemical composition add-value enhancers of edible mushroom mycelia such as Pleurotus ostreatus, C. cylindracea, and Lentinula edodes. Fungal growth substrates enriched with SMS and MBB extracts significantly affected the growth of mushroom mycelia. In particular, on P. ostreatus, the MBBs Ab and Cc extracts determined an increase in mycelial weight by 89.5%. Also, by-products influenced mushrooms' mycelial texture, which appeared more floccose and abundant in growth. FT-IR analysis showed that L. edodes mycelium, grown on MBB substrates, showed the highest increase in bands associated with proteins and chitin. Results demonstrated that mushroom by-products enhance mycelial growth and confer an enrichment of compounds that could increase mycelial resistance to pathogens and make a nutraceutical improvement.
Collapse
Affiliation(s)
- Gaia Carminati
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, UD, Italy
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, BO, Italy
| | - Luca Garagozzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, BO, Italy
| | - Alessandra Di Francesco
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, UD, Italy
| |
Collapse
|
3
|
Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024; 13:1464. [PMID: 38790763 PMCID: PMC11120248 DOI: 10.3390/foods13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry.
Collapse
Affiliation(s)
- Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando J. Lidon
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Tang Y, Zhai Q, Zhang Z, Lu Z, Li R, Zhang H. Exploration of the biodegradation pathway and enhanced removal of imazethapyr from soil by immobilized Bacillus marcorestinctum YN1. CHEMOSPHERE 2024; 351:141178. [PMID: 38218236 DOI: 10.1016/j.chemosphere.2024.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Excessive or inappropriate applications of imazethapyr cause severe ecological deteriorations and health risks in human. A novel bacterial strain, i.e., Bacillus marcorestinctum YN1, was isolated to efficiently degrade imazethapyr, with the degradation pathways and intermediates predicted. Protein mass spectrometry analysis identified enzymes in strain YN1 potentially involved in imazethapyr biodegradation, including methylenetetrahydrofolate dehydrogenase, carbon-nitrogen family hydrolase, heme degrading monooxygenase, and cytochrome P450. The strain YN1 was further immobilized with biochar (BC600) prepared from mushroom waste (i.e., spent mushroom substrate) by pyrolysis at 600 °C to evaluate its degrading characteristics of imazethapyr. Scanning electron microscope observation showed that strain YN1 was adsorbed in the rich pore structure of BC600 and the adsorption efficiency reached the maximum level of 88.02% in 6 h. Both energy dispersive X-ray and Fourier transform infrared spectroscopy analyses showed that BC600 contained many elements and functional groups. The results of liquid chromatography showed that biochar-immobilized strain YN1 (IBC-YN1) improved the degradation rate of imazethapyr from 79.2% to 87.4%. The degradation rate of imazethapyr by IBC-YN1 could still reach 81.0% in the third recycle, while the bacterial survival rate was 67.73% after 180 d storage at 4 °C. The treatment of IBC-YN1 significantly shortened the half-life of imazethapyr in non-sterilized soil from 35.51 to 11.36 d, and the vegetative growth of imazethapyr sensitive crop plant (i.e., Cucumis sativus L.) was significantly increased in soil remediated, showing that the inhibition rate of root length and fresh weight were decreased by 12.45% and 38.49% respectively. This study exhanced our understanding of microbial catabolism of imazethapyr, and provided a potential in situ remediation strategy for improving the soil environment polluted by imazethapyr.
Collapse
Affiliation(s)
- Yanan Tang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Qianhang Zhai
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhengyi Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhou Lu
- Laboratory of Quality & Safety Risk Assessment for Ginseng and Antler Products (Changchun), Ministry of Agricultural and Rural Affairs of PR China, Jilin Agricultural University, Changchun, 130118, China.
| | - Ranhong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Fordjour E, Manful CF, Javed R, Galagedara LW, Cuss CW, Cheema M, Thomas R. Chaga mushroom: a super-fungus with countless facets and untapped potential. Front Pharmacol 2023; 14:1273786. [PMID: 38116085 PMCID: PMC10728660 DOI: 10.3389/fphar.2023.1273786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Inonotus obliquus (Chaga mushroom) is an inexpensive fungus with a broad range of traditional and medicinal applications. These applications include therapy for breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits are virtually untapped due to a limited understanding of its mycochemical composition and bioactivities. In this article, we explore the ethnobotany, mycochemistry, pharmacology, traditional therapeutic, cosmetic, and prospective agricultural uses. The review establishes that several secondary metabolites, such as steroids, terpenoids, and other compounds exist in chaga. Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-inflammatory, antiviral, and antitumor agent. The study also demonstrates that Chaga powder has a long history of traditional use for medicinal purposes, pipe smoking rituals, and mystical future forecasts. The study further reveals that the applications of Chaga powder can be extended to industries such as pharmaceuticals, food, cosmetics, and agriculture. However numerous publications focused on the pharmaceutical benefits of Chaga with few publications on other applications. Overall, chaga is a promising natural resource with a wide range of potential applications and therefore the diverse array of therapeutic compounds makes it an attractive candidate for various applications such as plant biofertilizers and active ingredients in cosmetics and pharmaceutical products. Thus, further exploration of Chaga's potential benefits in agriculture and other industries could lead to exciting new developments and innovations.
Collapse
Affiliation(s)
- Eric Fordjour
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Charles F. Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman W. Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Chad W. Cuss
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Mumtaz Cheema
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Baptista F, Almeida M, Paié-Ribeiro J, Barros AN, Rodrigues M. Unlocking the Potential of Spent Mushroom Substrate (SMS) for Enhanced Agricultural Sustainability: From Environmental Benefits to Poultry Nutrition. Life (Basel) 2023; 13:1948. [PMID: 37895329 PMCID: PMC10608327 DOI: 10.3390/life13101948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In this comprehensive review, we delve into the myriad applications of spent mushroom substrate (SMS) in agricultural contexts, with a particular emphasis on its role in fostering sustainable poultry production. Our examination spans three key domains: the use of SMS in fertilizers, its impact on environmental factors and gas emissions, and its contribution to poultry nutrition. This review synthesizes findings from multiple studies that underscore the potential of composted SMS as a viable alternative to conventional inorganic fertilizers, effectively meeting crop nutrient needs while mitigating groundwater contamination risks. Moreover, we highlight the substantial environmental advantages associated with the utilization of SMS and poultry waste, including reductions in greenhouse gas emissions and the promotion of sustainable waste management practices. Additionally, we explore the promising outcomes of integrating SMS into animal feed formulations, which have demonstrated significant enhancements in livestock growth performance and overall health. In sum, this review underscores the versatility and untapped potential of SMS as a valuable agricultural resource, with a particular focus on its role in advancing sustainable practices, optimizing nutrient management, and harnessing the value of organic waste materials, especially in the context of poultry production.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (A.N.B.); (M.R.)
| | - Mariana Almeida
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (M.A.); (J.P.-R.)
| | - Jéssica Paié-Ribeiro
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (M.A.); (J.P.-R.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (A.N.B.); (M.R.)
| | - Miguel Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (A.N.B.); (M.R.)
| |
Collapse
|
7
|
Guan TK, Wang QY, Li JS, Yan HW, Chen QJ, Sun J, Liu CJ, Han YY, Zou YJ, Zhang GQ. Biochar immobilized plant growth-promoting rhizobacteria enhanced the physicochemical properties, agronomic characters and microbial communities during lettuce seedling. Front Microbiol 2023; 14:1218205. [PMID: 37476665 PMCID: PMC10354297 DOI: 10.3389/fmicb.2023.1218205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spent mushroom substrate (SMS) is the by-products of mushroom production, which is mainly composed of disintegrated lignocellulosic biomass, mushroom mycelia and some minerals. The huge output and the lack of effective utilization methods make SMS becoming a serious environmental problem. In order to improve the application of SMS and SMS derived biochar (SBC), composted SMS (CSMS), SBC, combined plant growth-promoting rhizobacteria (PGPR, Bacillus subtilis BUABN-01 and Arthrobacter pascens BUAYN-122) and SBC immobilized PGPR (BCP) were applied in the lettuce seedling. Seven substrate treatments were used, including (1) CK, commercial control; (2) T1, CSMS based blank control; (3) T2, T1 with combined PGPR (9:1, v/v); (4) T3, T1 with SBC (19:1, v/v); (5) T4, T1 with SBC (9:1, v/v); (6) T5, T1 with BCP (19:1, v/v); (7) T6, T1 with BCP (9:1, v/v). The physicochemical properties of substrate, agronomic and physicochemical properties of lettuce and rhizospheric bacterial and fungal communities were investigated. The addition of SBC and BCP significantly (p < 0.05) improved the total nitrogen and available potassium content. The 5% (v/v) BCP addiction treatment (T5) represented the highest fresh weight of aboveground and underground, leave number, chlorophyll content and leaf anthocyanin content, and the lowest root malondialdehyde content. Moreover, high throughput sequencing revealed that the biochar immobilization enhanced the adaptability of PGPR. The addition of PGPR, SBC and BCP significantly enriched the unique bacterial biomarkers. The co-occurrence network analysis revealed that 5% BCP greatly increased the network complexity of rhizospheric microorganisms and improved the correlations of the two PGPR with other microorganisms. Furthermore, microbial functional prediction indicated that BCP enhanced the nutrient transport of rhizospheric microorganisms. This study showed the BCP can increase the agronomic properties of lettuce and improve the rhizospheric microbial community.
Collapse
Affiliation(s)
- Ti-Kun Guan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jia-Shu Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Hui-Wen Yan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chao-Jie Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ying-Yan Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Jie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Li X, Wang M, Wen B, Zhang Q, Chen J, Li X, An Y. Reed-mushroom-fertilizer ecological agriculture in wetlands: Harvesting reed to cultivate mushroom and returning waste substrates to restore saline-alkaline marshes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162987. [PMID: 36958546 DOI: 10.1016/j.scitotenv.2023.162987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Construction of wetland ecological agriculture is recommended to perform ecological function and produce considerable economic value. A mode of wetland ecological agriculture was established on inland saline-alkaline marshes in Northeast of China here. This study used reed as substrate to cultivate Pleurotus citrinopileatus and return the waste substrate (SMS) to ameliorate the saline-alkalized soil. The biological efficiency of mushroom was 69.01 %, and the contents of sugar, crude protein, crude fat, and amino acids were 30.82 %, 23.07 %, 1.58 %, and 19.48 %, respectively in P. citrinopileatus. The cultivated mushrooms had higher contents of Ca, Fe, Zn and Cu, with lower levels of harmful heavy metals. When compared with initial substrates, the SMS remained 93.42 % fiber, 87.08 % carbon, 97.72 % nitrogen, 51.35 % phosphorus, and more Ca contents. Compared with the control, SMS application decreased the soil pH and electro-conductivity by 12.33 % and 30.75 %, and increased total nitrogen and organic matter by 34.98 % and 46.55 %, respectively. In addition to the soil improvements, the above- and belowground biomasses of reed were increased by 172.92 % and 59.64 %, respectively. The study indicated that reed could be used as mushrooms substrates, subsequently applied SMS to ameliorate the saline-alkaline soil. Our wetland ecological agriculture mode of "reed-mushroom-fertilizer" is available and effective for saline-alkaline wetland functioning and economic development.
Collapse
Affiliation(s)
- Xiaoyu Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Miao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Bolong Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qilin Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Junze Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiujun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yu An
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
9
|
Ngernyen Y, Petsri D, Sribanthao K, Kongpennit K, Pinijnam P, Pedsakul R, Hunt AJ. Adsorption of the non-steroidal anti-inflammatory drug (ibuprofen) onto biochar and magnetic biochar prepared from chrysanthemum waste of the beverage industry. RSC Adv 2023; 13:14712-14728. [PMID: 37197677 PMCID: PMC10184006 DOI: 10.1039/d3ra01949g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Biochar and magnetic biochar prepared from chrysanthemum waste of the beverage industry are effective adsorbents for the removal of the non-steroidal anti-inflammatory drug, ibuprofen (IBP), from aqueous systems. The development of magnetic biochar using iron chloride, overcame poor separation characteristics from the liquid phase of the powdered biochar after adsorption. Characterisation of biochars was achieved through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), N2 adsorption/desorption porosimetry, scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), moisture and ash content, bulk density, pH and zero-point charge (pHpzc). The specific surface area of non-magnetic and magnetic biochars was 220 and 194 m2 g-1, respectively. Adsorption of ibuprofen was optimised with respect to contact time (5-180 min), solution pH (2-12) and initial drug concentration (5-100 mg L-1), with equilibrium being reached in 1 hour, and the maximum ibuprofen removal occurred at pH 2 and 4 for biochar and magnetic biochars, respectively. Investigation of the adsorption kinetics was achieved through application of the pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion models. Adsorption equilibrium was evaluated using Langmuir, Freundlich and Langmuir-Freundlich isotherm models. The adsorption kinetics and isotherms for both biochars are well described by pseudo-second order kinetic and Langmuir-Freundlich isotherm models, respectively, with the maximum adsorption capacity of biochar and magnetic biochar being 167 and 140 mg g-1, respectively. Chrysanthemum derived non-magnetic and magnetic biochars exhibited significant potential as sustainable adsorbents toward the removal of emerging pharmaceutical pollutants such as ibuprofen from aqueous solution.
Collapse
Affiliation(s)
- Yuvarat Ngernyen
- Biomass & Bioenergy Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University Khon Kaen 40002 Thailand
| | - Decha Petsri
- Lahan Sai Ratchadaphisek School Lahansai District Buriram 31170 Thailand
| | | | | | - Palita Pinijnam
- Lahan Sai Ratchadaphisek School Lahansai District Buriram 31170 Thailand
| | - Rinrada Pedsakul
- Lahan Sai Ratchadaphisek School Lahansai District Buriram 31170 Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
10
|
Wang Y, Akdeniz N. Co-composting poultry carcasses with wood-based, distillers' grain and cow manure biochar to increase core compost temperatures and reduce leachate's COD. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:84-91. [PMID: 36870300 DOI: 10.1016/j.wasman.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Composting has been recognized as a viable method to dispose of animal carcasses. Common concerns related to the composting process include low core temperatures, leachate generation, and ammonia emissions. This study tested co-composting full-size poultry carcasses with commercially available biochars at an aeration rate of 0.8 L∙min-1. Biochars prepared by gasifying wood pallets, distillers' grains, and cow manure were added to the composting bins at the 13% rate (by volume). Results showed that poultry carcasses with wood-based and cow manure biochar increased temperatures by 2.0 to 3.3 °C. All biochar-amended bins met the time-temperature criteria to eliminate avian influenza (H7N1) viruses, which could not be achieved without biochar addition. Wood-based biochar amendment lowered the cumulative chemical oxygen demand of the leachate samples by 87% (P = 0.02). At the rate studied, the biochar amendment did not significantly affect ammonia emissions (P = 0.56). BET surface area of wood-based biochar was 1.4 and 28 times greater than that of cow manure and distillers' grain biochar, respectively. Compared to no biochar addition, wood-based biochar resulted in significantly higher compost temperatures (P = 0.02), lower leachate COD values (P = 0.02), and a higher total nitrogen content (P = 0.01) while it did not cause an increase in sodium content (P = 0.94) of the finished compost. In conclusion, amending the poultry carcass composting process with wood-based biochar (13% by volume) is recommended, especially to eliminate disease-causing agents.
Collapse
Affiliation(s)
- Yuchuan Wang
- Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Neslihan Akdeniz
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Kumar N, Gedam P, Gupta SK. Investigating the dynamics of ammonia volatilisation and the role of additives in thermal digestion of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116312. [PMID: 36261998 DOI: 10.1016/j.jenvman.2022.116312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Averting nutrient volatilisation in thermal treatment of organic waste is a challenging task. The dynamics of ammonia volatilisation and the role of additives in preventing the losses of nutrients in thermal digestion of food waste (FW) were explored. The experimental trials were performed in a convective dehydrator at different combinations of temperatures and airflow velocities. The study dictated that ammonia volatilisation rate increased with increase in temperature and airflow velocity. The losses reached to its peak during the initial drying period and then gradually declined in the falling rate period. An artificial intelligence-based random forest model was explored to precisely predict the ammonia losses during the drying process. The SEM-EDX images confirmed enhanced N (2.25%) in the alum treated end product compared to blank (N - 1.8%) and thus reveals alum induced mineralization of nutrients. Higher intensities of the N containing compounds peaks observed in FTIR spectra also supported the mineralization of nitrogen. XRD analysis indicated formation of stable ammonium compounds in the sample digested with alum. Cost benefit analysis of the alum aided digestion revealed that it enhances the nutrient retention and overall cost of N in the end product by ₹626/tonne. The study revealed high potential of alum in reducing the ammonia volatilisation and enhancing the agronomical value of nutrients in the thermal digestion process.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of Environmental Science & Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, 826004, India
| | - Pratik Gedam
- Department of Environmental Science & Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, 826004, India
| | - Sunil Kumar Gupta
- Department of Environmental Science & Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
12
|
Li G, Yang T, Xiao W, Wu J, Xu F, Li L, Gao F, Huang Z. Sustainable Environmental Assessment of Waste-to-Energy Practices: Co-Pyrolysis of Food Waste and Discarded Meal Boxes. Foods 2022; 11:foods11233840. [PMID: 36496648 PMCID: PMC9737573 DOI: 10.3390/foods11233840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The reuse of biomass waste is conducive to the recovery of resources and can solve the pollution problem caused by incineration and landfill. For this reason, the thermogravimetric analyzer (TGA) was used to study the pyrolysis of the mushroom sticks (MS) and discarded meal boxes at different heating rates (10 °C·min-1, 20 °C·min-1, 30 °C·min-1). The statistical analysis showed that the factors of pyrolysis temperature and particle size had a greater effect, while the heating rate was significant. The TGA revealed that the maximum weight loss rate of the co-pyrolysis of MS and discarded meal boxes increased with the rise of the heating rate, the temperature at which the pyrolysis started and ended increased, and the thermal weight loss displayed a hysteresis phenomenon. By comparing the theoretical heat weight loss curves with the experimental curves, a synergistic effect of the co-pyrolysis process between MS and discarded meal boxes was demonstrated, and the co-pyrolysis process resulted in a reduction in the solid residue content of the products. The Coats-Redfern method was used to fit the pyrolysis process of MS and discarded meal boxes, which applied the first-order kinetic model to describe the main process of pyrolysis and obtained the reaction activation energy between 43 and 45 kJ·mol-1. The results indicated that co-pyrolysis of MS and discarded meal boxes could decrease the activation energy of the reaction, make the reaction easier, promote the degree of pyrolysis reaction, reduce the generation of pollutants, and provide a theoretical basis for the recycling and energy utilization of MS and discarded meal boxes.
Collapse
Affiliation(s)
- Gang Li
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Tenglun Yang
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Wenbo Xiao
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Jiahui Wu
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Fuzhuo Xu
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Lianliang Li
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Fei Gao
- School of Food and Health, Beijing Technology and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
| | - Zhigang Huang
- School of Artificial Intelligence, Beijing Technology, and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, No.11 Fuchenglu, Haidian District, Beijing 100048, China
- Correspondence:
| |
Collapse
|
13
|
Zhang W, Feng S, Ma J, Zhu F, Komarneni S. Degradation of tetracycline by activating persulfate using biochar-based CuFe 2O 4 composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67003-67013. [PMID: 35513627 DOI: 10.1007/s11356-022-20500-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Biochar derived from Lentinus edodes (LBC) and CuFe2O4 (CuFe2O4@LBC) composites were prepared by the hydrothermal method, and were applied to activate persulfate (PDS) for degrading tetracycline (TC) in a wide pH range. The CuFe2O4@LBC composites were characterized by XRD, FTIR, SEM, and XPS. LBC-derived biochars greatly reduced the aggregation of CuFe2O4 particles and enhanced the catalytic performance of CuFe2O4. CuFe2O4@LBC catalyst could remove 85% of tetracycline within 100 min under visible light. In addition, the removal rate of TC reached 76% after five cycles, indicating that the composite had good stability and reusability. Simple classical quenching experiments suggested that the degradation of TC could be mainly attributed to •OH and •S [Formula: see text].
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Shijun Feng
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Fang Zhu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
14
|
Wiśniewska M, Marciniak M, Gęca M, Herda K, Pietrzak R, Nowicki P. Activated Biocarbons Obtained from Plant Biomass as Adsorbents of Heavy Metal Ions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5856. [PMID: 36079236 PMCID: PMC9457029 DOI: 10.3390/ma15175856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This paper deals with the adsorption of heavy metal ions on the surface of carbonaceous materials obtained via the chemical activation of biomass. Waste plum stones, pine sawdust and horsetail herb were used as the precursors of carbonaceous adsorbents. The effect of the precursor type and preparation procedure on the physicochemical properties of activated biocarbons and their sorption abilities towards Pb(II) and Cu(II) ions have been checked. The obtained micro-mesoporous activated biocarbons were characterized by determination of elemental composition and ash content, the number of surface functional groups and pH of water extracts as well as textural study based on low temperature nitrogen adsorption/desorption and scanning electron microscopy. Additionally, the electrokinetic studies including solid surface charge density and zeta potential determination were performed. Moreover, the adsorption data modelling (equilibrium and kinetics), XPS results analysis and comparison of parameters characterizing electrical double layer formed at the solid-liquid interface enabled the specification of the mechanism of heavy metals binding with the activated biocarbons surface. The maximum adsorption capacity towards copper and lead ions (177.5 and 178.1 mg/g, respectively) was found for plum stone-based activated biocarbon. For all carbonaceous materials, better fit to the experimental data was achieved with a Langmuir isotherm than a Freundlich one. In turn, a better fit of the kinetics data was obtained using the pseudo-second order model.
Collapse
Affiliation(s)
- Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Magdalena Marciniak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Marlena Gęca
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Karolina Herda
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
15
|
Hematological Changes in Sika Doe and Suckling Fawn Fed with Spent Mushroom Substrate of Pleurotus ostreatus. Animals (Basel) 2022; 12:ani12151984. [PMID: 35953973 PMCID: PMC9367358 DOI: 10.3390/ani12151984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Sika deer velvet antler is the most important animal nutraceutic in traditional Chinese medicine. Reducing the breeding cost of sika deer by looking for a low-cost diet is the main research direction at present. The purpose of this experiment was to find an alternative diet for sika deer and reduce the cost of the diet by using spent mushroom substrate (SMS) as a concentrate supplement. The apparent digestibility for sika doe and the hematological changes of sika doe and suckling fawn were measured by replacing 10% of the concentrate supplement with SMS of Pleurotus ostreatus (SMS-MP). Compared with the control group, the digestibility of dry matter (DM), total protein (TP), globulin (GLO), and cholesterol (CHOL) of sika doe were significantly decreased (p < 0.05), and glucose (GLU), alanine (Ala), phenylalanine (Phe), and proline (Pro) of sika doe were significantly increased (p < 0.05) after the replacement of SMS-MP. Compared with the control group, the serum GLU of suckling fawn was significantly decreased (p < 0.05) and the phosphatase (ALP) was significantly increased after the replacement of SMS-MP (p < 0.05). There were no significant differences in the immune globulin and amino acid of suckling fawns between the two groups (p > 0.05). The present findings confirm the applicability of SMS-MP as a sika doe concentrate supplement. At the same time, using SMS, a waste resource, can not only reduce the breeding cost of sika doe, but also make full use of SMS to reduce environmental pollution.
Collapse
|
16
|
Upadhyay SK, Chauhan PK. Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea Mays L.) plant growth, Na uptake reduction and saline soil restoration. ENVIRONMENTAL RESEARCH 2022; 211:113081. [PMID: 35304115 DOI: 10.1016/j.envres.2022.113081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/05/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is progressively affecting global agriculture area, and act as a brutal environmental factor for the productivity of plants, therefore, sustainable remediation of the saline soil is urgently required. In this study, we tested the effectiveness of PM (poultry manure), SMS (spent mushroom substrate), and CD (cow dung) for the recovery of salt soil and the optimization of the productivity of the maize plant. PM and SMS showed the valuable source of OC, N, P, K as the CD. The HCA analysis showed that 47% of the bacterial population from PM, SMS, and CD survived at 6% NaCl (w/v), which had PGP attributes such as IAA, P-solubilizers, and siderophore activity. The results from pot experiments of plant growth and PCA analysis of bacterial PGP attributes reveled re formulation of PM, SMS, and CD, which were further optimized at the saline field level. T-2 treated plant increased their shoot length, chlorophyll content, reducing sugar, nitrogen, phosphorus, and potassium levels significantly after 30 and 60 days, followed by T-4 and T-3 as the control. A significant (P < 0.01) increase in particle density and decrease in bulk density was observed for all combinations treated (T-2 to T-7). A two-year field study revealed that the T-2 combination increased 43% OC, 57% N, 66% P, 48% K, 32% DHA, 76% PPO in the soil than the control after 60 days. T2-combination decreased ≈50% of Na content in root and shoot, and increased 27% of maize crop yield. The dose of 10% PM + 10% SMS can significantly induce the growth of maize plants and the restoration of saline soil health.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| |
Collapse
|
17
|
Yuan C, Wu M, Tahir SM, Chen X, Li C, Zhang A, Lu W. Velvet Antler Production and Hematological Changes in Male Sika Deers Fed with Spent Mushroom Substrate. Animals (Basel) 2022; 12:ani12131689. [PMID: 35804587 PMCID: PMC9264756 DOI: 10.3390/ani12131689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
At present, spent mushroom substrate (SMS) is a waste resource that is producing a pollution problem in China, and which has some use as animal feed or fertilizer, has not been assessed as a feed for deer. The purpose of this study is to expand the feed of male sika deer and reduce the feeding cost by using the waste resource of SMS. The 10% concentrated supplement was replaced with SMS and the feed intake, apparent digestibility, blood index and velvet production of male sika deer were measured. As the results showed, compared to the control group, the substitution of SMS for 10% of the concentrate supplement decreased the concentration of IgA (p < 0.01), replacing 10% concentrated supplement with SMS of Pleurotus ostreatus (SMS-MP) reduced the intake of organic matter (OMI) and improved the digestibility of ether extract (EE), while replacing 10% concentrated supplement with SMS of Flammulina velutipes (SMS-MF) had no effect on apparent nutrient digestibility, feed intake, velvet antler production, and biochemical indexes. In conclusion, SMS had no effect on serum biochemical indexes and the ratio of the feed weight of the deer supplement to the weight of velvet antler (p > 0.05). At the same time, SMS could reduce the feed consumption and improve the economy by using SMS as a waste resource.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Zhang
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (A.Z.)
| | - Wenfa Lu
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (A.Z.)
| |
Collapse
|
18
|
Wang C, Luo D, Zhang X, Huang R, Cao Y, Liu G, Zhang Y, Wang H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100167. [PMID: 36159737 PMCID: PMC9488105 DOI: 10.1016/j.ese.2022.100167] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/21/2023]
Abstract
Increasing global population and decreasing arable land pose tremendous pressures to agricultural production. The application of conventional chemical fertilizers improves agricultural production, but causes serious environmental problems and significant economic burdens. Biochar gains increasing interest as a soil amendment. Recently, more and more attentions have been paid to biochar-based slow-release of fertilizers (SRFs) due to the unique properties of biochar. This review summarizes recent advances in the development, synthesis, application, and tentative mechanism of biochar-based SRFs. The development mainly undergoes three stages: (i) soil amendment using biochar, (ii) interactions between nutrients and biochar, and (iii) biochar-based SRFs. Various methods are proposed to improve the fertilizer efficiency of biochar, majorly including in-situ pyrolysis, co-pyrolysis, impregnation, encapsulation, and granulation. Considering the distinct features of different methods, the integrated methods are promising for fabricating effective biochar-based SRFs. The in-depth understanding of the mechanism of nutrient loading and slow release is discussed based on current knowledge. Additionally, the perspectives and challenges of the potential application of biochar-based SRFs are described. Knowledge surveyed from this review indicates that applying biochar-based SRFs is a viable way of promoting sustainable agriculture.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Corresponding author.
| | - Dan Luo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Gonggang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yingshuang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
19
|
Yuan C, Wu M, Chen X, Li C, Zhang A, Lu W. Growth Performance and Hematological Changes in Growing Sika Deers Fed with Spent Mushroom Substrate of Pleurotus ostreatus. Animals (Basel) 2022; 12:ani12060765. [PMID: 35327162 PMCID: PMC8944863 DOI: 10.3390/ani12060765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the rapid development of the mushroom industry, a large number of spent mushroom substrate (SMS) has also been produced. SMS can be easily digested by ruminants and is suitable for feeding animals, such as cows, sheep, as well as deer. The results of this study show that the dietary spent mushroom substrate of Pleurotus ostreatus (SMS-MP) has no obvious effect on the physiological condition of growing sika deer, at the same time it can reduce the cost of feeding and avoid environmental pollution caused by improper disposal of SMS-MP. Abstract The purpose of this experiment is to expand the feed of growing sika deer and to explore the effects on growing sika deer of the spent mushroom substrate of Pleurotus ostreatus (SMS-MP). Twelve immature female growing sika deer were randomly assigned to four groups. The ratios of SMS-MP to replace concentration supplements were 0%, 10%, 20%, and 30%, respectively, and the growth performance, feed intake and apparent digestibility, serum biochemical indexes, blood physiological indexes, serum immune globulin and plasma amino acid of growing sika deer were measured. The results of the current study confirmed the applicability of SMS-MP as a feed ingredient in growing sika deer diets. There was no significant change in growth performance and hematology of growing sika deer when the concentrate supplement was replaced with 10–20% SMS-MP. However, replacing 30% of concentrate supplements with SMS-MP in the growing sika deer diet resulted in significantly decreased Hb and HCT levels. It can be concluded that, as a waste resource, adding a small amount of SMS-MP has no significant effect on the growth of sika deer, and at the same time can reduce the consumption of concentrate supplements, thereby improving the economic benefits of sika deer breeding.
Collapse
Affiliation(s)
| | | | | | | | - Aiwu Zhang
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (W.L.)
| | - Wenfa Lu
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (W.L.)
| |
Collapse
|
20
|
Abstract
The edible mushroom industry has grown significantly in recent years due to the dietary change and the demand for heathy food. However, the spent mushroom compost (SMC) will be produced in large quantities after the harvest, thus forming an agricultural waste requiring proper management other than dumping or burning. In this work, two types of SMCs with the cultivation of shiitake fungus (SF) and black fungus (BF) were converted into porous biochar products (a series of SMC-SF-BC and SMC-BF-BC) at higher pyrolysis temperatures (i.e., 400, 600 and 800 °C) based on their thermochemical characteristics, using thermogravimetric analysis (TGA). The pore and chemical properties of the resulting products, including surface area, pore volume, average pore size, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier Transform infrared spectroscopy (FTIR), were studied to correlate them with the most important process parameter. The results showed that the pore properties of the biochar products indicated a significant increase with the increase in the pyrolysis temperature from 400 to 600 °C. The data on the maximal Brunauer-Emmett-Teller (BET) surface area for the biochar products produced at 800 °C (i.e., SMC-SF-BC-800 and SMC-BF-BC-800) were found to be 312.5 and 280.9 m2/g, respectively. Based on the EDS and FTIR, plenty of oxygen-containing functional groups were found on the surface of the resulting biochar products.
Collapse
|
21
|
Leong YK, Ma TW, Chang JS, Yang FC. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. BIORESOURCE TECHNOLOGY 2022; 344:126157. [PMID: 34678450 DOI: 10.1016/j.biortech.2021.126157] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Commercial mushrooms are cultivated on lignocellulose wastes, such as corncob, saw dust, straw and wood chips. Following the rapidly increasing global mushroom production, the efficient recycling and utilization of the by-product, known as spent mushroom substrate (SMS) has garnered much attention due to the serious pollution issues caused. Embracing the concept of 'circular economy', the SMSs have demonstrated immense potential in wide range of applications, including recycling as the substrate for new cultivation cycle of mushroom, biofertilizer and soil amendment, animal feed, renewable energy production and pollution bioremediation. The review provided an overview and recent advances focusing on these applications, analyzed the possible challenges and proposed future directions for sustainable development of global mushroom industry.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Te-Wei Ma
- Department of Chemical Engineering, Army Academy, Taoyuan 32092, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Fan-Chiang Yang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
22
|
Ndoung OCN, Figueiredo CCD, Ramos MLG. A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon 2021; 7:e08473. [PMID: 34917792 PMCID: PMC8646155 DOI: 10.1016/j.heliyon.2021.e08473] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Biochar is a carbonized biomass that can be used as a soil amendment. However, the exclusive use of biochar may present some limitations, such as the lack of nutrients. Thus, biochar enrichment techniques have made it possible to obtain biochar-based fertilizers (BCFs), with great potential to improve soil fertility. Nevertheless, there is still a lack of information about the description, advantages, and limitations of the methods used for biochar enrichment. This review provides a comprehensive overview of the production methods of enriched biochar and its performance in agriculture as a soil amendment. Studies demonstrate that the application of BCF is more effective in improving soil properties and crop yields than the exclusive application of pure biochar or other fertilizers. The post-pyrolysis method is the most used technique for enriching biochar. Future studies should focus on understanding the mechanisms of the long-term application of BCFs.
Collapse
|
23
|
Su L, Zhang H, Oh K, Liu N, Luo Y, Cheng H, Zhang G, He X. Activated biochar derived from spent Auricularia auricula substrate for the efficient adsorption of cationic azo dyes from single and binary adsorptive systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:101-121. [PMID: 34280158 DOI: 10.2166/wst.2021.222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, spent Auricularia auricula substrate (AS)-derived biochar (ASBCs) and activated biochar with NaOH (A-ASBC) were evaluated for the adsorption of cationic azo dyes, including methylene blue (MB), rhodamine B (RB), and crystal violet (CV), from single and binary adsorptive systems. A-ASBC showed a higher maximum adsorption capacity for these dyes (MB: 53.62 mg·g-1, RB: 32.33 mg·g-1, CV: 735.73 mg·g-1) than ASBCs in a single system because it had a greater specific surface area and more oxygen containing-functional groups on the surface. The adsorption process of the three dyes onto the adsorbents was in good agreement with the Freundlich adsorption isotherm and fit the pseudo-second-order kinetic model, which revealed sorbate polymolecular layer formation over the adsorbent surface and the involvement of chemisorption. The adsorption mechanism showed that the adsorption of three dyes on adsorbents could be postulated as a multistep process with extraordinary affinity-induced adsorption in terms of both physisorption and chemisorption. In the binary adsorptive system, the results showed that all MB, RB, and CV had antagonistic/competitive effects on each other's adsorption (QBinary/QSingle < 1). Furthermore, a phytotoxic assay affirmed the effectiveness of the adsorbent in adsorbing dye species from aqueous solutions using Brassica pekinensis L. seeds as the model. Therefore, activated biochar prepared from AS can be used as a potentially economical and effective adsorbent for treating printing and dyeing wastewater.
Collapse
Affiliation(s)
- Long Su
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Kokyo Oh
- Center for Environmental Science in Saitama, Kazo City, Saitama 347-0115, Japan
| | - Na Liu
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Hongyan Cheng
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Guosheng Zhang
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| | - Xiaofang He
- College of Resources and Environment, Shanxi Agricultural University, Shanxi Taigu 030801, China
| |
Collapse
|
24
|
Zhang B, Fan B, Hassan I, Peng Y, Ma R, Guan CY, Chen S, Cui S, Li G. Effects of bamboo biochar on nitrogen conservation during co-composting of layer manure and spent mushroom substrate. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-9. [PMID: 34044755 DOI: 10.1080/09593330.2021.1936201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Layer manure (LM) and spent mushroom substrate (SMS) are two kinds of nitrogen (N) rich solid wastes generate in the poultry breeding and agriculture production. Composting is an effective way to recycle the LM and SMS. However, a large amount of N in the LM and SMS was lost via volatilisation during composting, with negative environmental and economic consequences. This study investigated the effect of incorporating biochar at the ratio of 5%, 10%, and 15% (w/w) during co-composting of LM and SMS on ammonia (NH3) and nitrogen oxide (N2O) volatilisation and N retention. After the 35-day composting, the results showed that the pile temperature and seed germination index in biochar treatments were significantly improved in comparison with control treatment. The nitrogen in all treatments was lost in the form of N2O (0.05∼0.1%) and NH3 (13.1∼20.2%). Likewise, the total nitrogen loss was 28.9%, 20.3%, and 24.9%, respectively, of which N2O-N accounts for 0.05∼0.10%. Compared with control treatment, the total amount of NH3 volatilisation in biochar treatments of 5%BC, 10%BC and 15%BC was decreased by 21.2%, 33.1%, and 26.1%, respectively. The total amount of N2O emission was decreased by 39.0%, 13.2%, and 1.6%, respectively. Adding 10% and 15% biochar can significantly reduce NH3 volatilisation while adding 5% biochar treatment didn't significantly reduce NH3 emissions but showed the best performance in reducing N2O emission. The addition of 10% biochar in co-composting of LM and SMS is the recommended dosage that exhibited the best performance in improving composting quality and reducing nitrogen loss.
Collapse
Affiliation(s)
- Bangxi Zhang
- Institute of Agricultural Resources and Environment, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Beibei Fan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Iram Hassan
- Institute of Soil Science, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Yutao Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Ruonan Ma
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National llan University, Yilan, Taiwan
| | - Shili Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Shihao Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guoxue Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
25
|
Liu BL, Fu MM, Xiang L, Feng NX, Zhao HM, Li YW, Cai QY, Li H, Mo CH, Wong MH. Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143028. [PMID: 33129529 DOI: 10.1016/j.scitotenv.2020.143028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The growing incidence of microcystins (MCs) in the environment has become an issue of global concern for the high ecological and human health risks. Herein, a comparative adsorption of three MCs (MC-LR, MC-YR and MC-RR) by spent mushroom substrate (SMS)-derived biochars from contrasting pyrolytic conditions (temperature: 600/300 °C; and gas steam: CO2/N2) was surveyed to better understand the mechanisms and factors affecting the adsorption performance. For biochar preparation, 600 °C and CO2 led to greater levels of aromaticity, ash, SBET, and porosity, while 300 °C and N2 created more surface functional groups. The adsorption of MCs by biochars was a pH-dependent and endothermic physisorption process, following the pseudo-second-order kinetics (R2 = 0.99) and linear isotherm model (R2 > 0.88). The distribution coefficients Kd (0.98-19.2 L/kg) varied greatly among MCs (MC-YR > MC-RR > MC-LR) and biochars (BC600 > BN600 > BC300 > BN300), which depends on the combined effects of hydrophobicity, electrostatic attraction, H-bonding, cation bridging, and the amounts of adsorption sites on biochars. Higher ash, SBET, and total pore volume of BC600 facilitated the adsorption capacity for MCs relative to other biochars. Furthermore, the co-adsorption efficacy for MCs (Kd = 1.09-8.86 L/kg) was far below those for the single adsorption, indicating strong conflicts among competing MCs. This study sheds light on the roles of pyrolytic temperature and gas steam in biochar properties, and elucidates the mechanisms and factors affecting the adsorption performance of different MCs, which lays a foundation for MCs removal from water.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming-Ming Fu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
26
|
Zied DC, de Abreu CG, da S Alves L, Prado EP, Pardo-Gimenez A, de Melo PC, Dias ES. Influence of the production environment on the cultivation of lettuce and arugula with spent mushroom substrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111799. [PMID: 33421935 DOI: 10.1016/j.jenvman.2020.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
After mushroom production, the substrate plus the cultivated mycelium represents a byproduct, the so-called "spent mushroom substrate" (SMS). We evaluated different SMS types in fresh form, recently taken from the cultivation rooms, for the production of lettuce and arugula in the open field, greenhouse and greenhouse in pot. Three kinds of SMS were used (i - SMS of ABL (Agaricus subrufescens), ii - SMS of POS (Pleurotus ostreatus) and iii - 50% SMS of ABL + 50% SMS of POS) at three doses (1, 2 and 4 kg m-2). For comparison purposes, two commercial soil conditioners, Forth Condicionador® and Visa Fértil Orgânico®, were used. Finally, chicken manure with reference as international organic material was used. A control treatment consisted of a soil plot without any organic material. The application of fresh SMS in the production of LE (lettuce) and AR (arugula) is feasible considering several agronomic parameters evaluated, therefore that in F (field) the superior results were obtained by the ABL dose of 4 kg m-2, in the GR (green house) at a lower dose ABL with 1 kg m-2, POS with 2 kg m-2 and mix with ABL + POS at doses of 2-4 kg m-2, and finally in GR/P (greenhouse pot) it was proved that in a protected environment by rain the combination ABL + POS at dose of 4 kg m-2 is recommended.
Collapse
Affiliation(s)
- Diego C Zied
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Dracena, Brazil.
| | - Carlos G de Abreu
- Universidade Federal de Lavras, Departamento de Biologia, Lavras, Brazil
| | - Lucas da S Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, Brazil
| | - Evandro P Prado
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Dracena, Brazil
| | - Arturo Pardo-Gimenez
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, Spain
| | - Paulo C de Melo
- Universidade Federal de Lavras, Departamento de Biologia, Lavras, Brazil
| | - Eustáquio S Dias
- Universidade Federal de Lavras, Departamento de Biologia, Lavras, Brazil
| |
Collapse
|
27
|
Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, Van Le Q, Show PL, Chen WH, Lam SS. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123156. [PMID: 32574879 DOI: 10.1016/j.jhazmat.2020.123156] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 05/06/2023]
Abstract
A review of valorization of oyster mushroom species and waste generated in the mushroom cultivation is presented, with a focus on the cultivation and valorization techniques, conditions, current research status and particularly the hazard mitigation and value-added recovery of the waste mushroom substrate (WMS) - an abundant waste in mushroom cultivation industry. Based on the studies reviewed, the production rate of the present mushroom industry is inadequate to meet market demands. There is a need for the development of new mushroom cultivation methods that can guarantee an increase in mushroom productivity and quality (nutritional and medicinal properties). This review shows that the cylindrical baglog cultivation method is more advantageous compared with the wood tray cultivation method to improve the mushroom yield and cost efficiency. Approximately 5 kg of potentially hazardous WMS (spreading diseases in mushroom farm) is generated for production of 1 kg of mushroom. This encourages various valorization of WMS for use in agricultural and energy conversion applications, mainly as biocompost, plant growing media, and bioenergy. The use of WMS as biofertilizer has shown desirable performance compared to conventional chemical fertilizer, whilst the use of WMS as energy feedstock could produce cleaner bioenergy sources compared to conventional fuels.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wai Lun Nam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Han Yang
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xie Yi Lee
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yik Kin Lee
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown, Pulau Pinang 10400, Malaysia
| | - Nyuk Ling Ma
- Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Aqilah Mohammad
- Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
28
|
Alhujaily A, Mao Y, Zhang J, Ifthikar J, Zhang X, Ma F. Facile fabrication of Mg-Fe-biochar adsorbent derived from spent mushroom waste for phosphate removal. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Zhou J, Ge W, Zhang X, Wu J, Chen Q, Ma D, Chai C. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil. CHEMOSPHERE 2020; 259:127462. [PMID: 32590177 DOI: 10.1016/j.chemosphere.2020.127462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Spent mushroom substrate (SMS) is an agricultural waste with a high potential for polycyclic aromatic hydrocarbons (PAH) removal in aged contaminated soils. In this study, fresh and air-dried Pleurotus ostreatus, Pleurotus eryngii, and Auricularia auricular SMSs were used to remove PAHs in agricultural soil under 60-day incubation. The potential of SMS in PAH dissipation was studied by detecting the dissipation rate and the soil physicochemical index, enzyme activity, PAH-degradation bacterial biomass, and microbial diversity. Results showed that SMS significantly enhanced the dissipation of PAHs and fresh SMS had a better effect than air-dried SMS. The highest dissipation rate of 16 PAHs was 34.5%, which was observed in soil amended with fresh P. eryngii SMS, and the PAH dissipation rates with low and high molecular weights were 41.3% and 19.4%, respectively. By comparison, fresh P. eryngii SMS presented high nutrient contents, which promoted the development of PAH-degrading bacteria and changed the soil bacterial community involved in degradation, thereby promoting the PAH dissipation. The lignin-degrading enzymes in fresh SMS were abundant, and the laccase and manganese peroxidase activities in the treatment of fresh P. eryngii SMS was higher than those in other treatments. Fresh P. eryngii SMS improved the relative abundance of Microbacterium, Rhizobium, and Pseudomonas in soil, which were all related to PAH degradation. Consequently, adding fresh P. eryngii SMS was an effective method for remediating aged PAH-contaminated agricultural soils.
Collapse
Affiliation(s)
- Jiajing Zhou
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China
| | - Xiaomei Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Ma
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China.
| |
Collapse
|
30
|
Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3121-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Deng B, Shi Y, Zhang L, Fang H, Gao Y, Luo L, Feng W, Hu X, Wan S, Huang W, Guo X, Siemann E. Effects of spent mushroom substrate-derived biochar on soil CO 2 and N 2O emissions depend on pyrolysis temperature. CHEMOSPHERE 2020; 246:125608. [PMID: 31884231 DOI: 10.1016/j.chemosphere.2019.125608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Edible mushroom cultivation is an important industry in intensively managed forest understories. However, proper disposal of spent mushroom substrate (SMS) presents a challenge to its sustainable development. Biochar derived from SMS could be used to improve soil quality while providing a solution for SMS disposal. But SMS biochar pyrolyzed at different temperatures may alter carbon dioxide (CO2) and nitrous oxide (N2O) emissions associated with global warming, especially under the context of nitrogen (N) addition and warming. We conducted a factorial incubation study to examine greenhouse gas emissions and N transformations in moso bamboo forest soil amended with SMS-biochar (control vs. pyrolyzed at 300, 450 or 600 °C) in different N-addition (0 or 100 mg N kg-1 soil) and temperature (20, 25 or 30 °C) treatments. Pyrolysis temperature affected pH, C and N of SMS-biochars. N-transformations depended on the interaction of pyrolysis temperature, N-addition, and incubation temperature but were generally lower with 450 °C biochar addition. Soil N2O emissions increased with N-addition and they were more sensitive to incubation temperatures without biochar. Soil CO2 emissions increased with incubation temperature or biochar pyrolyzed at lower temperatures. Pyrolysis temperature might have regulated the effects of SMS-derived biochar on N2O emissions via changes in dissolved C, N, pH and associated changes in soil microbial community compositions. Because of the importance of sustainable development of this understory industry, amending soils with biochar produced at higher temperatures may be the best strategy for both the disposal of SMS and the mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Bangliang Deng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, 27695, USA
| | - Yanzhen Shi
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling Zhang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haifu Fang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Gao
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Laicong Luo
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Weixun Feng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaofei Hu
- School of Management, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Songze Wan
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Huang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaomin Guo
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, 77005, USA
| |
Collapse
|
32
|
Fan R, Zhang B, Li J, Zhang Z, Liang A. Straw-derived biochar mitigates CO 2 emission through changes in soil pore structure in a wheat-rice rotation system. CHEMOSPHERE 2020; 243:125329. [PMID: 31751926 DOI: 10.1016/j.chemosphere.2019.125329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
To better understand the relationships between soil pore structure features and soil CO2 emission and soil organic carbon (SOC) sequestration following different straw return modes, undisturbed soil cores (0-5 cm and 5-10 cm) were collected from a rice-wheat rotation system under 4 straw return treatments as (1) no straw return (CK), (2) straw direct return (DR), (3) straw biochar return (BR); (4) straw-pig manure fermentation return (FR) for six years. Pore structure parameters including pore size distribution, porosity, connectivity, anisotropy and fractal dimension (FD) were determined using X-ray computer tomography. Soil CO2 flux and concentrations of SOC, readily oxidable carbon and nutrients were also measured. The results showed that BR and FR had significantly higher SOC concentration than DR and CK. Porosity and number of >500 μm and 500-100 μm macropores, FD and connectivity were significantly highest under FR and was lowest under BR. FR and DR produced 28.1%-32.4% higher C-CO2 than CK and BR in wheat growing season, and 9.80%-16.9% higher in rice season. Soil CO2 emission and C concentrations were significantly related to soil pore structure parameters. The CO2 emission was most significantly related to number of >500 μm pores and FD, indicating that poorly developed pore structure under BR hindered the production and diffusion of CO2 from soil. These results enhanced our understanding of the relationship between soil pore structure and CO2 emission following biochar application, and provided evidence for decision making process in choosing proper straw managements to promote SOC sequestration and reduce CO2 emission.
Collapse
Affiliation(s)
- Ruqin Fan
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baohua Zhang
- School of Environment and Planning, Liaocheng University, Liaocheng, 252000, China
| | - Jiangye Li
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenhua Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Aizhen Liang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
33
|
Chang J, Zhang H, Cheng H, Yan Y, Chang M, Cao Y, Huang F, Zhang G, Yan M. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb 2+/Cd 2+ removal in water. CHEMOSPHERE 2020; 241:125121. [PMID: 31683424 DOI: 10.1016/j.chemosphere.2019.125121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The present study firstly reports spent Ganoderma lucidum substrate derived biochars (SLBCS) for the effective removal of Pb2+/Cd2+ from water. The effects of pyrolysis temperature on the SLBCS characteristics and Pb2+/Cd2+ adsorption mechanism was studied systematically. The surface physicochemical properties of SLBCS were significantly affected by the pyrolysis temperature. The increase in pyrolysis temperature from 250 to 650 °C resulted in a drastic increase in the biochar surface area and the well development of mesoporous structure, which could provide more effective adsorption sites for Pb2+ and Cd2+ onto SLBCS. According to the Langmuir model, the obtained maximum adsorption capacity of Pb2+ onto SL650 reached 262.76 mg g-1, while that of Cd2+ reached 75.82 mg g-1. The adsorption capacities of SL650 for Pb2+ and Cd2+ were even higher than that of other modified biochars. The high adsorption capacity of SL650 for Pb2+, attributed to the precipitation supported by high temperature, benefitted the formation of carbonate minerals. Two possible mechanisms involved in Cd2+ sorption: carbonate precipitation and coordination with π electrons. Desorption of SL650 showed high efficiency for Pb2+, but slightly low efficiency for Cd2+. These results indicate that SL650 can be applied for removing heavy metals, especially Pb2+, from polluted water.
Collapse
Affiliation(s)
- Jianning Chang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, China
| | - Hongyan Cheng
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yangyang Yan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Yanzhuan Cao
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Fei Huang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Guosheng Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Meng Yan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
34
|
Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, Zhang X, Qi H, Ma J, Xiao Y, Long L. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep 2019; 9:15999. [PMID: 31690791 PMCID: PMC6831587 DOI: 10.1038/s41598-019-52554-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022] Open
Abstract
As a multifunctional material, biochar is considered a potential adsorbent for removing heavy metals from wastewater. Most biochars with high adsorption capacities have been modified, but this modification is uneconomical, and modifying biochar may cause secondary pollution. Thus, it is necessary to develop an efficient biochar without modification. In this study, spent P. ostreatus substrate and spent shiitake substrate were used as the raw materials to prepare biochar. Then, the physicochemical properties of the biochars and their removal efficiencies for Pb(II) were investigated. The results showed that the physicochemical properties (e.g., large BET surface area, small pore structure and abundant functional groups) contributed to the large adsorption capacity for Pb(II); the maximum adsorption capacities were 326 mg g-1 (spent P. ostreatus substrate-derived biochar) and 398 mg g-1 (spent shiitake substrate-derived biochar), which are 1.6-10 times larger than those of other modified biochars. The Pb(II) adsorption data could be well described by the pseudo-second-order kinetic model and the Langmuir model. This study provides a new method to comprehensively utilize spent mushroom substrates for the sustainable development of the edible mushroom industry.
Collapse
Affiliation(s)
- Qianlan Wu
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Xian
- Sichuan Radiation Detection and Protection Institute of Nuclear industry (Sichuan Nuclear Emergency Technical Support Center), Chengdu, 610052, China
| | - Zilin He
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Zhang
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Wu
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Yang
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaohong Zhang
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Qi
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan, 625014, China
| | - Yinlong Xiao
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental science, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
35
|
Du J, Zhang Y, Hu B, Qv M, Ma C, Wei M, Zhang H. Insight into the potentiality of big biochar particle as an amendment in aerobic composting of sewage sludge. BIORESOURCE TECHNOLOGY 2019; 288:121469. [PMID: 31129519 DOI: 10.1016/j.biortech.2019.121469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
To assess the potential of big biochar as composting amendment, the study was performed on aerobic composting of sewage sludge amended with litchi wood biochar (10% of fresh mixture weight, 20-40 mm) in a 400 L bioreactor system. Physicochemical properties and microbial activities were monitored during the first fermentation process of aerobic compost. Application of big biochar reduced peak temperature and shortened thermophilic phase, but increased the activities of aryl-sulfatase, β-glucosidase, and dehydrogenase, which led to higher removal efficiency of total carbon, nitrogen, and sulphur. Big biochar inhibited degradation of organic matters in composting. Therefore, a comprehensive assessment including physicochemical and microbial properties can help to better understand the effect of big biochar on sewage sludge composting.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingxiang Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chuang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingbao Wei
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongzhong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| |
Collapse
|
36
|
Gutiérrez‐Gamboa G, Pérez‐Álvarez EP, Rubio‐Bretón P, Garde‐Cerdán T. Waste waters from the leachate of mushroom as vine foliar treatments: influence on grape volatile composition over two consecutive seasons. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gastón Gutiérrez‐Gamboa
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| | - Eva P. Pérez‐Álvarez
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| | - Pilar Rubio‐Bretón
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| | - Teresa Garde‐Cerdán
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| |
Collapse
|
37
|
Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol 2018; 102:7795-7803. [PMID: 30027491 PMCID: PMC6132538 DOI: 10.1007/s00253-018-9226-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Commercial mushrooms are produced on lignocellulose such as straw, saw dust, and wood chips. As such, mushroom-forming fungi convert low-quality waste streams into high-quality food. Spent mushroom substrate (SMS) is usually considered a waste product. This review discusses the applications of SMS to promote the transition to a circular economy. SMS can be used as compost, as a substrate for other mushroom-forming fungi, as animal feed, to promote health of animals, and to produce packaging and construction materials, biofuels, and enzymes. This range of applications can make agricultural production more sustainable and efficient, especially if the CO2 emission and heat from mushroom cultivation can be used to promote plant growth in greenhouses.
Collapse
|
38
|
Karadirek Ş, Okkay H. Statistical modeling of activated carbon production from spent mushroom compost. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Xian Y, Wu J, Yang G, Liao R, Zhang X, Peng H, Yu X, Shen F, Li L, Wang L. Adsorption characteristics of Cd(ii) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures. RSC Adv 2018; 8:28002-28012. [PMID: 35542729 PMCID: PMC9084324 DOI: 10.1039/c8ra03958e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/28/2018] [Indexed: 12/01/2022] Open
Abstract
To effectively remove Cd from water, biochars were produced by pyrolyzing surplus agricultural wastes of spent mushroom substrate (SMS) at 300, 500, and 700 °C. The biochars were characterized, and their Cd(ii) removal ratios and adsorption capacities in aqueous solutions were evaluated. The physical and chemical properties of the biochars were significantly affected by increasing the pyrolysis temperature; the data indicated that the ash content, pH and specific surface area of the biochars increased, whereas the yield and contents of carbon, hydrogen, nitrogen and oxygen decreased. In addition, the molar ratios of H/C, O/C and (O + N)/C decreased, which implied that the biochars became more aromatic and carbonaceous with a lower polarity and fewer oxygen-based functional groups. The pseudo-second-order kinetics model and Langmuir and Temkin isotherm models described the Cd(ii) adsorption better than the other tested models. The biochars derived at higher pyrolysis temperatures had higher adsorption capacities, and the maximum adsorption capacities for PC700 and SC700 were 71.49 and 46.87 mg g−1, respectively. The Qm values in our study were equivalent to or even higher than those for other modified biochars. This result shows that the biochars in this study are effective adsorbents for Cd(ii) removal from wastewater. To effectively remove Cd from water, biochars were produced by pyrolyzing SMS. And the adsorption characteristics of Cd(ii) using SMS biochars was studied.![]()
Collapse
Affiliation(s)
- Yang Xian
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Jun Wu
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Gang Yang
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Ruiting Liao
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Xiaohong Zhang
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Hong Peng
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Xiaoyu Yu
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Fei Shen
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Li Li
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Lilin Wang
- College of Environmental Science
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| |
Collapse
|
40
|
Sewu DD, Boakye P, Jung H, Woo SH. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica. BIORESOURCE TECHNOLOGY 2017; 244:1142-1149. [PMID: 28869124 DOI: 10.1016/j.biortech.2017.08.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal.
Collapse
Affiliation(s)
- Divine Damertey Sewu
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Patrick Boakye
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Hwansoo Jung
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea; BioGET Inc, Corporate Headquaters, Research Centre, NH05, Pai Chai University Daedeck Vally Campus, 11-3 Techno 1-ro Yuseong-gu Daejeon 34015, Republic of Korea
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea.
| |
Collapse
|