1
|
Sales Junior SF, da Silva EO, Mannarino CF, Correia FV, Saggioro EM. A comprehensive overview on solid waste leachate effects on terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170083. [PMID: 38224881 DOI: 10.1016/j.scitotenv.2024.170083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Leachate is a highly complex waste with high toxicological potential that poses a significant threat to the terrestrial environment. Determining leachate physicochemical parameters and identifying xenobiotics alone is, however, not enough to determine the real environmental impacts. In this context, the use of terrestrial model organisms has been highlighted as a tool in ecotoxicological leachate assessments and as a guiding principle in risk assessments. In this context, this review aimed to present the most current state of knowledge concerning leachate toxicity and the bioassays employed in this evaluation concerning terrestrial plants and animals. To this end, a literature search on leachate effects on terrestrial organisms was carried out using ten search terms, in 32 different combinations, at the Web of Science and Scopus databases. A total of 74 eligible articles were selected. The retrieved studies analyzed 42 different plant and animal species and employed nine endpoints, namely phytotoxicity, genotoxicity, bioaccumulation, antioxidant system, cytotoxicity, reproduction, physiological changes, behavior and lethality. A frequent association of toxic leachate effects with metals was observed, mainly Pb, Cd, Cr, Mg, Zn and Cr, which can cause antioxidant system alterations and cyto- and genotoxicity. These elements have also been associated to reproductive effects in earthworms and mice. Specifically concerning plants, most of the retrieved studies employed Allium cepa in toxicity assays, reporting phytotoxic effects frequently associated to metals and soil parameter changes. Animal studies, on the other hand, mostly employed mice and evaluated genotoxicity and antioxidant system effects. Even with the description of toxic leachate effects in both plants and animals, a lack of knowledge is still noted concerning reproductive, physiological, cytotoxic, and behavioral effects in terrestrial species. We, thus, suggest that further studies be carried out on other animals, advancing our understanding on potential environmental leachate effects, also allowing for human health risk assessments.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Evelyn Oliveira da Silva
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Fábio Veríssimo Correia
- Department of Natural Sciences, Federal University of the State of Rio de Janeiro (UNIRIO), 458 Pasteur Ave., 22290-20 Urca, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil; Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brazil Ave, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
2
|
He R, Peng C, Jiang L, Han H, Chu YX, Wang J, Liu CY, Zhao N. Characteristic pollutants and microbial community in underlying soils for evaluating landfill leakage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:269-280. [PMID: 36403411 DOI: 10.1016/j.wasman.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Leachate leakage poses a serious environmental risk to the safety of surrounding soils and groundwater. A much faster approach to reflect landfill leakage is the premise to mitigate the ecological risk of landfills. In this study, two landfills (BJ and WZ) were selected to investigate the leaching characteristics of various pollutants along the vadose soil depths. The physiochemical properties of underlying soils including NO3--N, NO2--N, NH4+-N, OM, TN, EC and Cl- exhibited a typical leaching dynamic along the depths. Among them, TN, NH4+-N, OM, NO3--N, and EC might be used as characteristic pollutants to evaluate the leachate leakage issues in landfilled sites. The genera Thiopseudomonas, Acinetobacter, Pseudomonas, and Hydrogenispora dominated in underlying soils. Compared to BJ samples, a more diverse and active microbiome capable of carbon and nitrogen cycles was observed in WZ samples, which was mainly ascribed to nutrients and elements contained in different types of soils. Among the environmental factors, nitrogenous compounds, SO42-, pH and EC had significant effects on the microbial community structures in the underlying soils. The relative abundances of Hydrogenispora and Caldicoprobacter might be used as characteristic microorganisms to evaluate the leachate leakage issues in landfilled sites. These results provided a deep insight into effects of leachate leakage in underlying soils, especially the pollutants vertical distribution and the corresponding microbial community structures.
Collapse
Affiliation(s)
- Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Chun Peng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lei Jiang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hua Han
- BGI Engineering Consultants LTD., Beijing 100000, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Yang Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
3
|
Li Y, Ma J, Li Y, Xiao C, Shen X, Chen J, Xia X. Nitrogen addition facilitates phytoremediation of PAH-Cd cocontaminated dumpsite soil by altering alfalfa growth and rhizosphere communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150610. [PMID: 34597578 DOI: 10.1016/j.scitotenv.2021.150610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Thousands of unlined landfills and open dumpsites seriously threatened the safety of soil and groundwater due to leachate leakage with a mass of pollutants, particularly heavy metals, organic contaminants and ammonia. Phytoremediation is widely used in the treatment of cocontaminated soils because it is cost-effective and environmentally friendly. However, the extent to which phytoremediation efficiency and plant physiological responses are affected by the high nitrogen (N) content in such cocontaminated soil is still uncertain. Here, pot experiments were conducted to investigate the effects of N addition on the applicability of legume alfalfa remediation for polycyclic aromatic hydrocarbon‑cadmium (PAHCd) co-/contaminated soil and the corresponding microbial regulation mechanism. The results showed that the PAH dissipation rates and Cd removal rates in the high-contamination groups increased with the external N supply, among which the pyrene dissipation rates in the cocontaminated soil was elevated most significantly, from 78.10% to 87.25%. However, the phytoremediation efficiency weakened in low cocontaminated soil, possibly because the excessive N content had inhibitory effects on the rhizobium Ensifer and restrained alfalfa growth. Furthermore, the relative abundance of PAH-degrading bacteria in the rhizosphere dominated PAH dissipation. As reflected by principal coordinate analysis (PCoA) analysis and hierarchical dendrograms, the microbial community composition changed with N addition, and a more pronounced shift was found in the rhizosphere relative to the endosphere or shoots of alfalfa. This study will provide a theoretical basis for legume plant remediation of dumpsites as well as soil contaminated with multiple pollutants.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Chen Xiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Jiajun Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| |
Collapse
|
4
|
Li Y, He L, Lv L, Xue J, Wu L, Zhang Z, Yang L. Review on plant uptake of PFOS and PFOA for environmental cleanup: potential and implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30459-30470. [PMID: 33893912 DOI: 10.1007/s11356-021-14069-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have gained increasing concern due to their persistent characteristics, wide distribution, biotoxicity, and bioaccumulative properties. The current remediation technologies for PFOA and PFOS are primarily focused on physical and chemical techniques. Phytoremediation has provided promising alternatives to traditional cleanup technologies due to their low operational costs, low maintenance requirements, end-use value, and aesthetic nature. In this review, uptake, translocation, and toxic effects of PFOS and PFOA are summarized and discussed. Several potential hyperaccumulators of PFOS and PFOA are provided according to the existing data. Biomass, chlorophyll, soluble protein, enzyme activities, oxidative stress, and other variables are assessed for potential indicator of PFOS/PFOA biotoxicity. The various studies on multiple scales are compared for identifying the threshold values. Several important implications and recommendations for future research are proposed at the end. This review provides an overview of current studies on plant uptake of PFOS and PFOA from the perspective of phytoremediation.
Collapse
Affiliation(s)
- Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Lixin Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianming Xue
- New Zealand Forest Research Institute Limited (Scion), Christchurch, 8440, New Zealand
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Dardouri S, Jedidi A, Mejri S, Hattab S, Sghaier J. Morphological effect of dichloromethane on alfalfa ( Medicago sativa) cultivated in soil amended with fertilizer manures. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:263-271. [PMID: 32851853 DOI: 10.1080/15226514.2020.1810205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we investigated the morphological effect of dichloromethane (DCM) on alfalfa (Medicago sativa) plant. We studied in vitro the influence of its concentration on alfalfa germination. The plants were placed in pots for 15 weeks, and exposed to increasing concentrations of DCM (50 µg L-1 and 84 mg L-1). In addition, we examined the effect of two manures (cow and sheep), which were applied to a contaminated soil, on alfalfa plant growth. The effect of the presence of dichloromethane is obvious even in plant-soil manure system. In fact, in the event of contamination, the soil-cow manure mixture represents the best setting medium for the Alfalfa plant compared to other environments, regardless of the contamination level. Indeed, the presence of two types of manure does not allow the suppression of the inhibitory effect of dichloromethane on the mass of the dry matter of the aerial part which is 18.38% for the cow manure-amended soil and 13.96% for the sheep manure-amended soil.
Collapse
Affiliation(s)
- Sana Dardouri
- Laboratory of Thermal and Thermodynamics in Industrial Processes, National Engineering School of Monastir, Monastir, Tunisia
| | - Asma Jedidi
- Laboratory of Thermal and Thermodynamics in Industrial Processes, National Engineering School of Monastir, Monastir, Tunisia
| | - Sabrine Mejri
- Integrated Devices and Systems, Faculty of Electrical Engineering, Mathematical and Computer Science, University of Twente, the Netherlands
| | - Sabrine Hattab
- Regional Research Centre on Horticulture and Organic Agriculture, Chott-Mariem, Sousse, Tunisia
| | - Jalila Sghaier
- Laboratory of Thermal and Thermodynamics in Industrial Processes, National Engineering School of Monastir, Monastir, Tunisia
| |
Collapse
|
6
|
Zhang Y, Li C, Ji X, Yun C, Wang M, Luo X. The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15515-15536. [PMID: 32078132 DOI: 10.1007/s11356-020-07646-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
As a cost-effective, environmentally friendly remediation technology, phytoremediation is defined as the use of green plants to remove pollutants from the environment or render them harmless and has been applied to a variety of contaminated sites throughout the world. There is a prominent phenomenon in which publications about phytoremediation increase each year and involve an increasing number of subject categories. This paper adopts the scientometric analysis method to assess the current state and explore the trends of phytoremediation research based on the bibliographic records retrieved from the Web of Science Core Collection (WoSCC). The results of this paper clearly answer the following questions. (1) What are the publishing characteristics of research on the topic of phytoremediation? What are the characteristics of academic collaboration in phytoremediation research? (2) What are the characteristics and development trends of phytoremediation research? (3) What are the hotspots and frontiers of phytoremediation research? Overall, the research method provides a new approach for the assessment of the performance of phytoremediation research. These results may help new researchers quickly integrate into the field of phytoremediation, as they can easily grasp the frontiers of phytoremediation research and obtain more valuable scientific information. This study also provides references for the follow-up research of relevant researchers.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Chen Li
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, People's Republic of China.
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China.
- Shaanxi Key Laboratory of Catalysis, Hanzhong, 723001, Shaanxi, People's Republic of China.
| | - Xiaohui Ji
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, People's Republic of China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
- Shaanxi Key Laboratory of Catalysis, Hanzhong, 723001, Shaanxi, People's Republic of China
| | - Chaole Yun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Maolin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Xu Q, Renault S, Yuan Q. Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:831-839. [PMID: 31044602 DOI: 10.1080/15226514.2019.1568383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Landfilling has been widely used for solid waste disposal; however, the generation of leachate can pose a major threat to the surrounding environment in the form of soil salinity. Two native plants of North America Puccinellia nuttalliana (alkaligrass) and Typha latifolia (cattail) were selected in this study to investigate bioaccumulation of sodium (Na+) and chloride (Cl-) under controlled greenhouse conditions. The treatments include irrigation of the plants using fertilizer (F), landfill leachate (LL), and tap water (control, C). Plants cultivated after one season (12 weeks) were harvested by separating aboveground tissues and roots, and soil from each treatment was collected for analysis. The results show that alkaligrass irrigated with LL had 2.13% more biomass yield than control, but 17.63% less than that with F. However, cattail yielded 19.70% more biomass with the irrigation of LL than C and 3.04% less compared to F. Alkaligrass and cattail accumulated 6.85 and 7.00 g Na+/Kg biomass with the irrigation of LL, respectively. Alkaligrass and cattail irrigated with LL accumulated 120.14% and 94.47% more Cl- than C. When alkaligrass and cattail were irrigated with LL, the electrical conductivity of soil was reduced by 71.70% and 45.36%, respectively. This study demonstrated that using North American native halophytes could be a cost-effective and promising approach for phytoremediation of landfill leachate.
Collapse
Affiliation(s)
- Qian Xu
- a Department of Civil Engineering , University of Manitoba , Winnipeg , Canada
| | - Sylvie Renault
- b Department of Biological Sciences , University of Manitoba , Winnipeg , Canada
| | - Qiuyan Yuan
- a Department of Civil Engineering , University of Manitoba , Winnipeg , Canada
| |
Collapse
|
8
|
Vaverková MD, Elbl J, Radziemska M, Adamcová D, Kintl A, Baláková L, Bartoň S, Hladký J, Kynický J, Brtnický M. Environmental risk assessment and consequences of municipal solid waste disposal. CHEMOSPHERE 2018; 208:569-578. [PMID: 29890495 DOI: 10.1016/j.chemosphere.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Effective and efficient assessments of the site conditions are required for the sustainable management of landfills. In this study we propose an evaluation method to determine the degree of environmental contamination by the contest of heavy metals (HM) concentrations in soil and plants (Tanacetum vulgare L., Carduus L., Plantago major L.). We compared HM concentrations in the soil, leaves, stem and roots of those native plants. Content of HM in samples was at the same level in all localities, except content of Zn. These values confirm that the area is not naturally burdened by increased HM content in the soil, and also that the deposited municipal waste or the material used for reclamation and composting does not contain risk elements. The content of selected HM was monitored in plants naturally occurring in the area of interest. We can state that the content of individual HM was in the plant biomass at the same level. The measured values confirmed that the largest number of HM was in roots, then in stem and the least in leaves. In addition, specific indexes were determined: BAC, TF, CF, PLI and Igeo. The BAC values confirmed that the individual plants had the ability to accumulate Pb and Cd (BAC> 2) but were limited to bind Mn and Zn (BAC <1). TF values confirmed that plants had a different ability to transport HM from roots to aboveground biomass. Potential soil contamination was detected using CF, PLI and Igeo indexes but contamination by HM was not confirmed.
Collapse
Affiliation(s)
- Magdalena Daria Vaverková
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic; Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 159, 02 776, Warsaw, Poland.
| | - Jakub Elbl
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Maja Radziemska
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Dana Adamcová
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Antonín Kintl
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic; Agriculture Research Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Ludmila Baláková
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Stanislav Bartoň
- Opole University of Technology, Faculty of Electrical Engineering Automatic Control and Informatics, Proszkowska 76, 45-758 Opole, Poland
| | - Jan Hladký
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Jindřich Kynický
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Martin Brtnický
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|