1
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
2
|
Yang Z, Karczewska-Golec J, Styczynski M, Bajda T, Drewniak L. Characterization of Fe-based sediments received from chemical pre-treatment of hydrometallurgical waste leachate from the recycling of alkaline batteries. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123988. [PMID: 33265027 DOI: 10.1016/j.jhazmat.2020.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
The waste leachate from the hydrometallurgical recycling of spent batteries contains a significant amount of undesirable iron that needs to be precipitated before the recovery of target metals. The produced Fe-sediments are usually disposed of or stored at the treatment site as waste and are often poorly managed. This work estimates the environmental stability and application potential of Fe-sediments produced from highly acidic hydrometallurgical leachate during the recycling of spent alkaline batteries. After pH neutralization of the leachate by Na2CO3, a primary Fe-sediment (PFS), mainly composed of highly unstable metal (i.e., Fe, Zn, and Mn) sulfates, was obtained. The subsequent rinsing of this unstable PFS sediment led to the production of a secondary Fe-sediment (SFS), which was composed of an amorphous-phased ferric iron sulfate hydrate - Fe16O16(SO4)3(OH)10·10H2O. The results of single extraction using chemical reagents and biological dissolution by iron-transforming bacteria confirmed that despite most of the ions in PFS were dissolvable, the processed SFS was environmentally safe. The sorption efficiency of SFS towards Pb(II) and As(V) (up to ~ 99% and 94%, respectively, with an initial concentration of 100 mg/L) was found to be promising, suggesting the high potential for economical reuse of SFS.
Collapse
Affiliation(s)
- Zhendong Yang
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Karczewska-Golec
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Styczynski
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Tomasz Bajda
- AGH University of Science and Technology in Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Lukasz Drewniak
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
3
|
Liu B, Kim KH, Kumar V, Kim S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121815. [PMID: 31831285 DOI: 10.1016/j.jhazmat.2019.121815] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The presence of arsenic in the water system has been a universal problem over the past several decades. Inorganic arsenic ions mainly occur in two oxidation states, As(V) and As(III), in the natural environment. These two oxidation states of arsenic ions are ubiquitous in natural waters and pose significant health hazards to humans when present at or above the allowable limits. Therefore, treatment of arsenic ions has become more stringent based on various techniques (e.g., membrane filtration, adsorption, and ion exchange). This paper aims to review the current knowledge on various functional adsorbents through comparison of removal potential for As on the basis of key performance metrics, especially the partition coefficient (PC). As a whole, novel materials exhibited far better removal performance for As(V) and As(III) than conventional materials. Of the materials reviewed, the advanced sorbent like ZrO(OH)2/CNTs showcased superior performances such as partition coefficient values of 584.6 (As(V) and 143.8 mol kg-1 M-1 (As(III) with excellent regenerability (>90 % of desorption efficiency after three sorption cycles). The results of this review are expected to help researchers to establish a powerful strategy for abatement of arsenic ions in wastewater.
Collapse
Affiliation(s)
- Botao Liu
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Xu L, Huang Y. A simple and novel method to enhance As (V) removal by zero valent iron and activated iron media through air injection at intervals. CHEMOSPHERE 2019; 222:415-421. [PMID: 30711731 DOI: 10.1016/j.chemosphere.2019.01.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
A simple and novel method was developed at first time to enhance As (V) removal by zero valent iron (ZVI) and activated ZVI/Fe3O4 media (AIM) through air injection at intervals. Fe (II) was essential to trigger As (V) removal by ZVI and AIM, and magnetite did not improve As (V) removal. In presence of 0.5 mM Fe (II) under anaerobic condition, 10 g L-1 ZVI and AIM showed same As (V) removal efficiency including percentage, capacity and rate of >99.999%, 3.0 mg/g ZVI/AIM and 0.013 mg As (V)/(g · min), respectively. Compared to the passivation of ZVI and AIM after one-time air injection, As (V) removal efficiency was significantly improved by intermittent air injection with increased air volume and injection frequency. After third time of 1.0 mL air injection at 30 min intervals, As (V) removal percentage and capacity remained same remarkable values as that under anaerobic condition, but total removal rate was further improved to 0.033 mg As (V)/(g · min). XPS results indicated that As (V) was completely reduced to As (III) and As (0) by Fe (0) under anaerobic condition, but quick adsorption/co-precipitation of As (V) followed by reduction to As (III) and As (0) by Fe (0) was the main mechanism under aerobic condition. This study suggests the addition of Fe (II) followed by simple air injection at intervals harnesses the reactivity of traditional ZVI for arsenic removal.
Collapse
Affiliation(s)
- Lin Xu
- Department of Biological and Agricultural Engineering, Texas A&M University, 2113 TAMU, College Station, TX 77843, USA.
| | - Yongheng Huang
- Department of Biological and Agricultural Engineering, Texas A&M University, 2113 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Li L, Zhu C, Liu X, Li F, Li H, Ye J. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34091-34102. [PMID: 30284163 DOI: 10.1007/s11356-018-3021-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to determine effects of biochar derived from wheat straw at 500 °C on arsenic immobilization in a soil-Brassica campestris L system. When the soils amended with 4% modified biochar (MBC), 0.5% Fe grit as zero-valent iron (ZVI), 0.5% Fe grit + 4% MBC (ZMBC), 0.5% ZVI + 4% biochar (ZBC), 4% biochar (BC), and control (without amendments), it confirmed that available arsenic concentration in soils occurred in the following order: ZMBC < MBC < ZVI < ZBC < Control < BC. Water-soluble As (WSAs) was reduced by 89.74% and 92.30% in MBC- and ZMBC-amended soils, respectively, compared to the control. When MBC applied into soil, As uptake of shoot and root decreased by 44.55% and 45.40%, respectively, and ZMBC resulted in 74.92% and 71.80% reduction in shoot and root As of Brassica campestris L. Immobilization effect of As in ZBC was also observed though BC elevated plant As uptake significantly. The immobilization effect of MBC was mainly attributed to Fe2O3 impregnation illustrated by x-ray diffraction (XRD) and scanning electron microscopy (SEM) images through sorption, precipitation, and coprecipitation. Such Fe containing complexes might impede As translocation from root to shoot and subsequently reduce As accumulation in the plant with modified biochar amendment.
Collapse
Affiliation(s)
- Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China.
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Xiaoshi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Feng Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| | - Jing Ye
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100101, People's Republic of China
| |
Collapse
|
6
|
diCenzo GC, Debiec K, Krzysztoforski J, Uhrynowski W, Mengoni A, Fagorzi C, Gorecki A, Dziewit L, Bajda T, Rzepa G, Drewniak L. Genomic and Biotechnological Characterization of the Heavy-Metal Resistant, Arsenic-Oxidizing Bacterium Ensifer sp. M14. Genes (Basel) 2018; 9:E379. [PMID: 30060533 PMCID: PMC6115938 DOI: 10.3390/genes9080379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022] Open
Abstract
Ensifer (Sinorhizobium) sp. M14 is an efficient arsenic-oxidizing bacterium (AOB) that displays high resistance to numerous metals and various stressors. Here, we report the draft genome sequence and genome-guided characterization of Ensifer sp. M14, and we describe a pilot-scale installation applying the M14 strain for remediation of arsenic-contaminated waters. The M14 genome contains 6874 protein coding sequences, including hundreds not found in related strains. Nearly all unique genes that are associated with metal resistance and arsenic oxidation are localized within the pSinA and pSinB megaplasmids. Comparative genomics revealed that multiple copies of high-affinity phosphate transport systems are common in AOBs, possibly as an As-resistance mechanism. Genome and antibiotic sensitivity analyses further suggested that the use of Ensifer sp. M14 in biotechnology does not pose serious biosafety risks. Therefore, a novel two-stage installation for remediation of arsenic-contaminated waters was developed. It consists of a microbiological module, where M14 oxidizes As(III) to As(V) ion, followed by an adsorption module for As(V) removal using granulated bog iron ores. During a 40-day pilot-scale test in an abandoned gold mine in Zloty Stok (Poland), water leaving the microbiological module generally contained trace amounts of As(III), and dramatic decreases in total arsenic concentrations were observed after passage through the adsorption module. These results demonstrate the usefulness of Ensifer sp. M14 in arsenic removal performed in environmental settings.
Collapse
Affiliation(s)
- George C diCenzo
- Laboratory of Microbial Genetics, Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Klaudia Debiec
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Jan Krzysztoforski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland.
| | - Witold Uhrynowski
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Alessio Mengoni
- Laboratory of Microbial Genetics, Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Camilla Fagorzi
- Laboratory of Microbial Genetics, Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Adrian Gorecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
7
|
Debiec K, Rzepa G, Bajda T, Uhrynowski W, Sklodowska A, Krzysztoforski J, Drewniak L. Granulated Bog Iron Ores as Sorbents in Passive (Bio)Remediation Systems for Arsenic Removal. Front Chem 2018; 6:54. [PMID: 29616211 PMCID: PMC5864855 DOI: 10.3389/fchem.2018.00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
Abstract
The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 μg/L, which is below the limit for industrial water.
Collapse
Affiliation(s)
- Klaudia Debiec
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Witold Uhrynowski
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jan Krzysztoforski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|